aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra/browse.daase
diff options
context:
space:
mode:
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r--src/share/algebra/browse.daase1282
1 files changed, 641 insertions, 641 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index a8f3a706..bb9886f6 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2265141 . 3477435921)
+(2265897 . 3477490099)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4438 . T) (-4437 . T))
+((-4444 . T) (-4443 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4434 . T) (-4432 . T) (-4431 . T) ((-4439 "*") . T) (-4430 . T) (-4435 . T) (-4429 . T))
+((-4440 . T) (-4438 . T) (-4437 . T) ((-4445 "*") . T) (-4436 . T) (-4441 . T) (-4435 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,14 +56,14 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -3508)
+(-32 R -3514)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4437)))
+((|HasAttribute| |#1| (QUOTE -4443)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4437 . T) (-4438 . T))
+((-4443 . T) (-4444 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,17 +82,17 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-4431 . T) (-4432 . T) (-4434 . T))
+((-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -3508 UP UPUP -3026)
+(-40 -3514 UP UPUP -3032)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4430 |has| (-412 |#2|) (-367)) (-4435 |has| (-412 |#2|) (-367)) (-4429 |has| (-412 |#2|) (-367)) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| (-412 |#2|) (QUOTE (-145))) (|HasCategory| (-412 |#2|) (QUOTE (-147))) (|HasCategory| (-412 |#2|) (QUOTE (-354))) (-3972 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-354)))) (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-372))) (-3972 (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (QUOTE (-354)))) (-3972 (-12 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-354))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -644) (QUOTE (-551)))) (-3972 (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))))
-(-41 R -3508)
+((-4436 |has| (-412 |#2|) (-367)) (-4441 |has| (-412 |#2|) (-367)) (-4435 |has| (-412 |#2|) (-367)) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| (-412 |#2|) (QUOTE (-145))) (|HasCategory| (-412 |#2|) (QUOTE (-147))) (|HasCategory| (-412 |#2|) (QUOTE (-354))) (-3978 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-354)))) (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-372))) (-3978 (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (QUOTE (-354)))) (-3978 (-12 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-354))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -644) (QUOTE (-551)))) (-3978 (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))))
+(-41 R -3514)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -426) (|devaluate| |#1|)))))
@@ -106,23 +106,23 @@ NIL
((|HasCategory| |#1| (QUOTE (-310))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4434 |has| |#1| (-562)) (-4432 . T) (-4431 . T))
+((-4440 |has| |#1| (-562)) (-4438 . T) (-4437 . T))
((|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4437 . T) (-4438 . T))
-((-3972 (-12 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4304) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2263) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-855)))) (-12 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4304) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2263) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107))))) (-3972 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-855))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-3972 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-855))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107))) (-3972 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (-3972 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4304) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2263) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))))
+((-4443 . T) (-4444 . T))
+((-3978 (-12 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-855)))) (-12 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107))))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-855))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-3978 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-855))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (-3978 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4431 . T) (-4432 . T) (-4434 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
((|HasCategory| $ (QUOTE (-1055))) (|HasCategory| $ (LIST (QUOTE -1044) (QUOTE (-551)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
@@ -130,7 +130,7 @@ NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4434 . T))
+((-4440 . T))
NIL
(-51)
((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and AnyFunctions1.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -3508)
+(-54 |Base| R -3514)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -158,77 +158,77 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4437 . T) (-4438 . T))
+((-4443 . T) (-4444 . T))
NIL
(-58 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4438 . T) (-4437 . T))
-((-3972 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3972 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4444 . T) (-4443 . T))
+((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-59 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
-(-61 -3985)
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+(-61 -3991)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-62 -3985)
+(-62 -3991)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-63 -3985)
+(-63 -3991)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-64 -3985)
+(-64 -3991)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-65 -3985)
+(-65 -3991)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -3985)
+(-66 -3991)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -3985)
+(-67 -3991)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -3985)
+(-68 -3991)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -3985)
+(-69 -3991)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -3985)
+(-70 -3991)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -3985)
+(-71 -3991)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -3985)
+(-72 -3991)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -3985)
+(-73 -3991)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -3985)
+(-74 -3991)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-75 -3985)
+(-75 -3991)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -240,51 +240,51 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-78 -3985)
+(-78 -3991)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -3985)
+(-79 -3991)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -3985)
+(-80 -3991)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -3985)
+(-81 -3991)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -3985)
+(-82 -3991)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -3985)
+(-83 -3991)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -3985)
+(-84 -3991)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -3985)
+(-85 -3991)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -3985)
+(-86 -3991)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -3985)
+(-87 -3991)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-88 -3985)
+(-88 -3991)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-89 -3985)
+(-89 -3991)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -294,8 +294,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-367))))
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -318,15 +318,15 @@ NIL
NIL
(-97)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4437 . T))
+((-4443 . T))
NIL
(-98)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4437 . T) ((-4439 "*") . T) (-4438 . T) (-4434 . T) (-4432 . T) (-4431 . T) (-4430 . T) (-4435 . T) (-4429 . T) (-4428 . T) (-4427 . T) (-4426 . T) (-4425 . T) (-4433 . T) (-4436 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4424 . T))
+((-4443 . T) ((-4445 "*") . T) (-4444 . T) (-4440 . T) (-4438 . T) (-4437 . T) (-4436 . T) (-4441 . T) (-4435 . T) (-4434 . T) (-4433 . T) (-4432 . T) (-4431 . T) (-4439 . T) (-4442 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4430 . T))
NIL
(-99 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4434 . T))
+((-4440 . T))
NIL
(-100 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}.")))
@@ -342,15 +342,15 @@ NIL
NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4439 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4445 "*"))))
(-105)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4437 . T))
+((-4443 . T))
NIL
(-106 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -358,23 +358,23 @@ NIL
NIL
(-107 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4438 . T))
+((-4444 . T))
NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| (-551) (QUOTE (-916))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-551) (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-147))) (|HasCategory| (-551) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-551) (QUOTE (-1026))) (|HasCategory| (-551) (QUOTE (-825))) (-3972 (|HasCategory| (-551) (QUOTE (-825))) (|HasCategory| (-551) (QUOTE (-855)))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-1157))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-551) (QUOTE (-234))) (|HasCategory| (-551) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-551) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -312) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -289) (QUOTE (-551)) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-310))) (|HasCategory| (-551) (QUOTE (-550))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-551) (LIST (QUOTE -644) (QUOTE (-551)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (-3972 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (|HasCategory| (-551) (QUOTE (-145)))))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| (-551) (QUOTE (-916))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-551) (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-147))) (|HasCategory| (-551) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-551) (QUOTE (-1026))) (|HasCategory| (-551) (QUOTE (-825))) (-3978 (|HasCategory| (-551) (QUOTE (-825))) (|HasCategory| (-551) (QUOTE (-855)))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-1157))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-551) (QUOTE (-234))) (|HasCategory| (-551) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-551) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -312) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -289) (QUOTE (-551)) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-310))) (|HasCategory| (-551) (QUOTE (-550))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-551) (LIST (QUOTE -644) (QUOTE (-551)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (-3978 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (|HasCategory| (-551) (QUOTE (-145)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4438 . T) (-4437 . T))
+((-4444 . T) (-4443 . T))
((-12 (|HasCategory| (-112) (QUOTE (-1107))) (|HasCategory| (-112) (LIST (QUOTE -312) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-112) (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-112) (QUOTE (-1107))) (|HasCategory| (-112) (LIST (QUOTE -618) (QUOTE (-868)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4432 . T) (-4431 . T))
+((-4438 . T) (-4437 . T))
NIL
(-112)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")))
@@ -388,22 +388,22 @@ NIL
((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise.")))
NIL
NIL
-(-115 -3508 UP)
+(-115 -3514 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-116 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| (-116 |#1|) (QUOTE (-916))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-116 |#1|) (QUOTE (-1026))) (|HasCategory| (-116 |#1|) (QUOTE (-825))) (-3972 (|HasCategory| (-116 |#1|) (QUOTE (-825))) (|HasCategory| (-116 |#1|) (QUOTE (-855)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-116 |#1|) (QUOTE (-1157))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| (-116 |#1|) (QUOTE (-234))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -312) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -289) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-310))) (|HasCategory| (-116 |#1|) (QUOTE (-550))) (|HasCategory| (-116 |#1|) (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-916)))) (-3972 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-916)))) (|HasCategory| (-116 |#1|) (QUOTE (-145)))))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| (-116 |#1|) (QUOTE (-916))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-116 |#1|) (QUOTE (-1026))) (|HasCategory| (-116 |#1|) (QUOTE (-825))) (-3978 (|HasCategory| (-116 |#1|) (QUOTE (-825))) (|HasCategory| (-116 |#1|) (QUOTE (-855)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-116 |#1|) (QUOTE (-1157))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| (-116 |#1|) (QUOTE (-234))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -312) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -289) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-310))) (|HasCategory| (-116 |#1|) (QUOTE (-550))) (|HasCategory| (-116 |#1|) (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-916)))) (-3978 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-916)))) (|HasCategory| (-116 |#1|) (QUOTE (-145)))))
(-118 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4438)))
+((|HasAttribute| |#1| (QUOTE -4444)))
(-119 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -414,15 +414,15 @@ NIL
NIL
(-121 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
(-122 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-123)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4438 . T) (-4437 . T))
+((-4444 . T) (-4443 . T))
NIL
(-124 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -430,24 +430,24 @@ NIL
NIL
(-125 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4437 . T) (-4438 . T))
+((-4443 . T) (-4444 . T))
NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
(-128)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
NIL
(-129)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-4438 . T) (-4437 . T))
-((-3972 (-12 (|HasCategory| (-128) (QUOTE (-855))) (|HasCategory| (-128) (LIST (QUOTE -312) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1107))) (|HasCategory| (-128) (LIST (QUOTE -312) (QUOTE (-128)))))) (-3972 (-12 (|HasCategory| (-128) (QUOTE (-1107))) (|HasCategory| (-128) (LIST (QUOTE -312) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| (-128) (LIST (QUOTE -619) (QUOTE (-540)))) (-3972 (|HasCategory| (-128) (QUOTE (-855))) (|HasCategory| (-128) (QUOTE (-1107)))) (|HasCategory| (-128) (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-128) (QUOTE (-1107))) (|HasCategory| (-128) (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| (-128) (QUOTE (-1107))) (|HasCategory| (-128) (LIST (QUOTE -312) (QUOTE (-128))))))
+((-4444 . T) (-4443 . T))
+((-3978 (-12 (|HasCategory| (-128) (QUOTE (-855))) (|HasCategory| (-128) (LIST (QUOTE -312) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1107))) (|HasCategory| (-128) (LIST (QUOTE -312) (QUOTE (-128)))))) (-3978 (-12 (|HasCategory| (-128) (QUOTE (-1107))) (|HasCategory| (-128) (LIST (QUOTE -312) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| (-128) (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| (-128) (QUOTE (-855))) (|HasCategory| (-128) (QUOTE (-1107)))) (|HasCategory| (-128) (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-128) (QUOTE (-1107))) (|HasCategory| (-128) (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| (-128) (QUOTE (-1107))) (|HasCategory| (-128) (LIST (QUOTE -312) (QUOTE (-128))))))
(-130)
((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host")))
NIL
@@ -466,13 +466,13 @@ NIL
NIL
(-134)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
-(((-4439 "*") . T))
+(((-4445 "*") . T))
NIL
-(-135 |minix| -3033 R)
+(-135 |minix| -3039 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
-(-136 |minix| -3033 S T$)
+(-136 |minix| -3039 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
@@ -494,8 +494,8 @@ NIL
NIL
(-141)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4437 . T) (-4427 . T) (-4438 . T))
-((-3972 (-12 (|HasCategory| (-144) (QUOTE (-372))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-144) (QUOTE (-372))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))))
+((-4443 . T) (-4433 . T) (-4444 . T))
+((-3978 (-12 (|HasCategory| (-144) (QUOTE (-372))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-144) (QUOTE (-372))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))))
(-142 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -510,7 +510,7 @@ NIL
NIL
(-145)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4434 . T))
+((-4440 . T))
NIL
(-146 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -518,9 +518,9 @@ NIL
NIL
(-147)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4434 . T))
+((-4440 . T))
NIL
-(-148 -3508 UP UPUP)
+(-148 -3514 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}.")))
NIL
NIL
@@ -531,14 +531,14 @@ NIL
(-150 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasAttribute| |#1| (QUOTE -4437)))
+((|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasAttribute| |#1| (QUOTE -4443)))
(-151 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-152 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4432 . T) (-4431 . T) (-4434 . T))
+((-4438 . T) (-4437 . T) (-4440 . T))
NIL
(-153)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -560,7 +560,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-158 R -3508)
+(-158 R -3514)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -591,10 +591,10 @@ NIL
(-165 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1008))) (|HasCategory| |#2| (QUOTE (-1208))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1026))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4433)) (|HasAttribute| |#2| (QUOTE -4436)) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-562))))
+((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1008))) (|HasCategory| |#2| (QUOTE (-1208))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1026))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4439)) (|HasAttribute| |#2| (QUOTE -4442)) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-562))))
(-166 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4430 -3972 (|has| |#1| (-562)) (-12 (|has| |#1| (-310)) (|has| |#1| (-916)))) (-4435 |has| |#1| (-367)) (-4429 |has| |#1| (-367)) (-4433 |has| |#1| (-6 -4433)) (-4436 |has| |#1| (-6 -4436)) (-1466 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4436 -3978 (|has| |#1| (-562)) (-12 (|has| |#1| (-310)) (|has| |#1| (-916)))) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4439 |has| |#1| (-6 -4439)) (-4442 |has| |#1| (-6 -4442)) (-1466 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-167 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -606,8 +606,8 @@ NIL
NIL
(-169 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4430 -3972 (|has| |#1| (-562)) (-12 (|has| |#1| (-310)) (|has| |#1| (-916)))) (-4435 |has| |#1| (-367)) (-4429 |has| |#1| (-367)) (-4433 |has| |#1| (-6 -4433)) (-4436 |has| |#1| (-6 -4436)) (-1466 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-354))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1208)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-234))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-826)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1026))))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-367)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-916))))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-1008))) (|HasCategory| |#1| (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3972 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-562)))) (-3972 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-1066))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-367)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-234))) (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasAttribute| |#1| (QUOTE -4433)) (|HasAttribute| |#1| (QUOTE -4436)) (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-354)))))
+((-4436 -3978 (|has| |#1| (-562)) (-12 (|has| |#1| (-310)) (|has| |#1| (-916)))) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4439 |has| |#1| (-6 -4439)) (-4442 |has| |#1| (-6 -4442)) (-1466 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-354))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1208)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-234))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-826)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1026))))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-367)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-916))))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-1008))) (|HasCategory| |#1| (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-1066))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-367)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-234))) (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasAttribute| |#1| (QUOTE -4439)) (|HasAttribute| |#1| (QUOTE -4442)) (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-354)))))
(-170 R S)
((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}.")))
NIL
@@ -622,7 +622,7 @@ NIL
NIL
(-173)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+(((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-174)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -630,7 +630,7 @@ NIL
NIL
(-175 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4439 "*") . T) (-4430 . T) (-4435 . T) (-4429 . T) (-4431 . T) (-4432 . T) (-4434 . T))
+(((-4445 "*") . T) (-4436 . T) (-4441 . T) (-4435 . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-176)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -684,7 +684,7 @@ NIL
((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors")))
NIL
NIL
-(-189 R -3508)
+(-189 R -3514)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -792,23 +792,23 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-216 -3508 UP UPUP R)
+(-216 -3514 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-217 -3508 FP)
+(-217 -3514 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-218)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| (-551) (QUOTE (-916))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-551) (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-147))) (|HasCategory| (-551) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-551) (QUOTE (-1026))) (|HasCategory| (-551) (QUOTE (-825))) (-3972 (|HasCategory| (-551) (QUOTE (-825))) (|HasCategory| (-551) (QUOTE (-855)))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-1157))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-551) (QUOTE (-234))) (|HasCategory| (-551) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-551) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -312) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -289) (QUOTE (-551)) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-310))) (|HasCategory| (-551) (QUOTE (-550))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-551) (LIST (QUOTE -644) (QUOTE (-551)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (-3972 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (|HasCategory| (-551) (QUOTE (-145)))))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| (-551) (QUOTE (-916))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-551) (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-147))) (|HasCategory| (-551) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-551) (QUOTE (-1026))) (|HasCategory| (-551) (QUOTE (-825))) (-3978 (|HasCategory| (-551) (QUOTE (-825))) (|HasCategory| (-551) (QUOTE (-855)))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-1157))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-551) (QUOTE (-234))) (|HasCategory| (-551) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-551) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -312) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -289) (QUOTE (-551)) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-310))) (|HasCategory| (-551) (QUOTE (-550))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-551) (LIST (QUOTE -644) (QUOTE (-551)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (-3978 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (|HasCategory| (-551) (QUOTE (-145)))))
(-219)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-220 R -3508)
+(-220 R -3514)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -822,19 +822,19 @@ NIL
NIL
(-223 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
(-224 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4434 . T))
+((-4440 . T))
NIL
-(-225 R -3508)
+(-225 R -3514)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-226)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4213 . T) (-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4219 . T) (-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-227)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}")))
@@ -842,15 +842,15 @@ NIL
NIL
(-228 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4439 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4445 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
(-229 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-230 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4438 . T))
+((-4444 . T))
NIL
(-231 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
@@ -858,7 +858,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))))
(-232 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4434 . T))
+((-4440 . T))
NIL
(-233 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
@@ -866,33 +866,33 @@ NIL
NIL
(-234)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4434 . T))
+((-4440 . T))
NIL
(-235 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4437)))
+((|HasAttribute| |#1| (QUOTE -4443)))
(-236 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4438 . T))
+((-4444 . T))
NIL
(-237)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-238 S -3033 R)
+(-238 S -3039 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853))) (|HasAttribute| |#3| (QUOTE -4434)) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (QUOTE (-1107))))
-(-239 -3033 R)
+((|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853))) (|HasAttribute| |#3| (QUOTE -4440)) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (QUOTE (-1107))))
+(-239 -3039 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4431 |has| |#2| (-1055)) (-4432 |has| |#2| (-1055)) (-4434 |has| |#2| (-6 -4434)) ((-4439 "*") |has| |#2| (-173)) (-4437 . T))
+((-4437 |has| |#2| (-1055)) (-4438 |has| |#2| (-1055)) (-4440 |has| |#2| (-6 -4440)) ((-4445 "*") |has| |#2| (-173)) (-4443 . T))
NIL
-(-240 -3033 R)
+(-240 -3039 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4431 |has| |#2| (-1055)) (-4432 |has| |#2| (-1055)) (-4434 |has| |#2| (-6 -4434)) ((-4439 "*") |has| |#2| (-173)) (-4437 . T))
-((-3972 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-367))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-3972 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3972 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (QUOTE (-234))) (-3972 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))))) (|HasCategory| (-551) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasAttribute| |#2| (QUOTE -4434)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))))
-(-241 -3033 A B)
+((-4437 |has| |#2| (-1055)) (-4438 |has| |#2| (-1055)) (-4440 |has| |#2| (-6 -4440)) ((-4445 "*") |has| |#2| (-173)) (-4443 . T))
+((-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-367))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-3978 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3978 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (QUOTE (-234))) (-3978 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))))) (|HasCategory| (-551) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasAttribute| |#2| (QUOTE -4440)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))))
+(-241 -3039 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
@@ -906,7 +906,7 @@ NIL
NIL
(-244)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4430 . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4436 . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-245 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
@@ -914,16 +914,16 @@ NIL
NIL
(-246 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-4438 . T) (-4437 . T))
-((-3972 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3972 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4444 . T) (-4443 . T))
+((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-247 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-248 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4439 "*") |has| |#2| (-173)) (-4430 |has| |#2| (-562)) (-4435 |has| |#2| (-6 -4435)) (-4432 . T) (-4431 . T) (-4434 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3972 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3972 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3972 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4435)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4445 "*") |has| |#2| (-173)) (-4436 |has| |#2| (-562)) (-4441 |has| |#2| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#2| (QUOTE (-916))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3978 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3978 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-249)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
NIL
@@ -938,23 +938,23 @@ NIL
NIL
(-252 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4434 -3972 (-3268 (|has| |#4| (-1055)) (|has| |#4| (-234))) (-3268 (|has| |#4| (-1055)) (|has| |#4| (-906 (-1183)))) (|has| |#4| (-6 -4434)) (-3268 (|has| |#4| (-1055)) (|has| |#4| (-644 (-551))))) (-4431 |has| |#4| (-1055)) (-4432 |has| |#4| (-1055)) ((-4439 "*") |has| |#4| (-173)) (-4437 . T))
-((-3972 (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-367))) (-3972 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (QUOTE (-1055)))) (-3972 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-367)))) (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-798))) (-3972 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (QUOTE (-853)))) (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (QUOTE (-731))) (-3972 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-1055)))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3972 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (-3972 (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#4| (QUOTE (-1055)))) (-3972 (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551)))))) (|HasCategory| (-551) (QUOTE (-855))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1055)))) (-3972 (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1055)))) (|HasCategory| |#4| (QUOTE (-731)))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-3972 (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#4| (QUOTE (-1055)))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3972 (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasAttribute| |#4| (QUOTE -4434)) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1055))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))))
+((-4440 -3978 (-3274 (|has| |#4| (-1055)) (|has| |#4| (-234))) (-3274 (|has| |#4| (-1055)) (|has| |#4| (-906 (-1183)))) (|has| |#4| (-6 -4440)) (-3274 (|has| |#4| (-1055)) (|has| |#4| (-644 (-551))))) (-4437 |has| |#4| (-1055)) (-4438 |has| |#4| (-1055)) ((-4445 "*") |has| |#4| (-173)) (-4443 . T))
+((-3978 (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-367))) (-3978 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (QUOTE (-1055)))) (-3978 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-367)))) (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-798))) (-3978 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (QUOTE (-853)))) (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (QUOTE (-731))) (-3978 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-1055)))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3978 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (-3978 (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#4| (QUOTE (-1055)))) (-3978 (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551)))))) (|HasCategory| (-551) (QUOTE (-855))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1055)))) (-3978 (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1055)))) (|HasCategory| |#4| (QUOTE (-731)))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (-3978 (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#4| (QUOTE (-1055)))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3978 (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasAttribute| |#4| (QUOTE -4440)) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1055))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))))
(-253 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4434 -3972 (-3268 (|has| |#3| (-1055)) (|has| |#3| (-234))) (-3268 (|has| |#3| (-1055)) (|has| |#3| (-906 (-1183)))) (|has| |#3| (-6 -4434)) (-3268 (|has| |#3| (-1055)) (|has| |#3| (-644 (-551))))) (-4431 |has| |#3| (-1055)) (-4432 |has| |#3| (-1055)) ((-4439 "*") |has| |#3| (-173)) (-4437 . T))
-((-3972 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-367))) (-3972 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055)))) (-3972 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-798))) (-3972 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853)))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-731))) (-3972 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3972 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (-3972 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#3| (QUOTE (-1055)))) (-3972 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551)))))) (|HasCategory| (-551) (QUOTE (-855))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (-3972 (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (QUOTE (-731)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-3972 (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#3| (QUOTE (-1055)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3972 (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasAttribute| |#3| (QUOTE -4434)) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))))
+((-4440 -3978 (-3274 (|has| |#3| (-1055)) (|has| |#3| (-234))) (-3274 (|has| |#3| (-1055)) (|has| |#3| (-906 (-1183)))) (|has| |#3| (-6 -4440)) (-3274 (|has| |#3| (-1055)) (|has| |#3| (-644 (-551))))) (-4437 |has| |#3| (-1055)) (-4438 |has| |#3| (-1055)) ((-4445 "*") |has| |#3| (-173)) (-4443 . T))
+((-3978 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-367))) (-3978 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055)))) (-3978 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-798))) (-3978 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853)))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-731))) (-3978 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3978 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#3| (QUOTE (-1055)))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551)))))) (|HasCategory| (-551) (QUOTE (-855))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (QUOTE (-731)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#3| (QUOTE (-1055)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasAttribute| |#3| (QUOTE -4440)) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))))
(-254 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-234))))
(-255 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-6 -4435)) (-4432 . T) (-4431 . T) (-4434 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
NIL
(-256 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4437 . T) (-4438 . T))
+((-4443 . T) (-4444 . T))
NIL
(-257 |Ex|)
((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -994,8 +994,8 @@ NIL
NIL
(-266 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-6 -4435)) (-4432 . T) (-4431 . T) (-4434 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3972 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3972 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#3| (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#3| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#3| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3972 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4435)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-916))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#3| (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#3| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#3| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-267 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -1040,11 +1040,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-278 R -3508)
+(-278 R -3514)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-279 R -3508)
+(-279 R -3514)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -1070,7 +1070,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1107))))
(-285 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4438 . T))
+((-4444 . T))
NIL
(-286 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -1091,18 +1091,18 @@ NIL
(-290 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4438)))
+((|HasAttribute| |#1| (QUOTE -4444)))
(-291 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-292 S R |Mod| -2224 -3953 |exactQuo|)
+(-292 S R |Mod| -2225 -3959 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-293)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4430 . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4436 . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-294)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Identifier|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}.")) (|setProperty!| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{setProperty!(n,p,v,e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `nothing.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -1114,16 +1114,16 @@ NIL
NIL
(-296 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4434 -3972 (|has| |#1| (-1055)) (|has| |#1| (-478))) (-4431 |has| |#1| (-1055)) (-4432 |has| |#1| (-1055)))
-((|HasCategory| |#1| (QUOTE (-367))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1055)))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3972 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-1055)))) (-3972 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731)))) (|HasCategory| |#1| (QUOTE (-478))) (-3972 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-301))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-478)))) (-3972 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731)))) (-3972 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-731))))
+((-4440 -3978 (|has| |#1| (-1055)) (|has| |#1| (-478))) (-4437 |has| |#1| (-1055)) (-4438 |has| |#1| (-1055)))
+((|HasCategory| |#1| (QUOTE (-367))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1055)))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3978 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-1055)))) (-3978 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731)))) (|HasCategory| |#1| (QUOTE (-478))) (-3978 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-301))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-478)))) (-3978 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731)))) (-3978 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-731))))
(-297 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
(-298 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4304) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2263) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (-3972 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (-3972 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1107))) (-3972 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1107))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))))
(-299)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
@@ -1136,11 +1136,11 @@ NIL
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
NIL
-(-302 -3508 S)
+(-302 -3514 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-303 E -3508)
+(-303 E -3514)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}.")))
NIL
NIL
@@ -1170,7 +1170,7 @@ NIL
NIL
(-310)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-311 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -1180,7 +1180,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-313 -3508)
+(-313 -3514)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1194,12 +1194,12 @@ NIL
NIL
(-316 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-916))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-1026))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-825))) (-3972 (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-825))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-855)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-1157))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-234))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -312) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -289) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-310))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-550))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-916)))) (-3972 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-916)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-145)))))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-916))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-1026))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-825))) (-3978 (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-825))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-855)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-1157))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-234))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -312) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -289) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-310))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-550))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-916)))) (-3978 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-916)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-145)))))
(-317 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4434 -3972 (-3268 (|has| |#1| (-1055)) (|has| |#1| (-644 (-551)))) (-12 (|has| |#1| (-562)) (-3972 (-3268 (|has| |#1| (-1055)) (|has| |#1| (-644 (-551)))) (|has| |#1| (-1055)) (|has| |#1| (-478)))) (|has| |#1| (-1055)) (|has| |#1| (-478))) (-4432 |has| |#1| (-173)) (-4431 |has| |#1| (-173)) ((-4439 "*") |has| |#1| (-562)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-562)) (-4429 |has| |#1| (-562)))
-((-3972 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (QUOTE (-562))) (-3972 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (QUOTE (-21))) (-3972 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (-3972 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3972 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (-3972 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (-3972 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (-3972 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562)))) (-3972 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-1118)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1118)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3972 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1055)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| $ (QUOTE (-1055))) (|HasCategory| $ (LIST (QUOTE -1044) (QUOTE (-551)))))
+((-4440 -3978 (-3274 (|has| |#1| (-1055)) (|has| |#1| (-644 (-551)))) (-12 (|has| |#1| (-562)) (-3978 (-3274 (|has| |#1| (-1055)) (|has| |#1| (-644 (-551)))) (|has| |#1| (-1055)) (|has| |#1| (-478)))) (|has| |#1| (-1055)) (|has| |#1| (-478))) (-4438 |has| |#1| (-173)) (-4437 |has| |#1| (-173)) ((-4445 "*") |has| |#1| (-562)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-562)) (-4435 |has| |#1| (-562)))
+((-3978 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (QUOTE (-562))) (-3978 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (QUOTE (-21))) (-3978 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (-3978 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (-3978 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (-3978 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-1118)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1118)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3978 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1055)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| $ (QUOTE (-1055))) (|HasCategory| $ (LIST (QUOTE -1044) (QUOTE (-551)))))
(-318 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1208,7 +1208,7 @@ NIL
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-320 R -3508)
+(-320 R -3514)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.")))
NIL
NIL
@@ -1218,8 +1218,8 @@ NIL
NIL
(-322 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-367)) (-4429 |has| |#1| (-367)) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-551)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasSignature| |#1| (LIST (QUOTE -4390) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4256) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3497) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-551)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4262) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))))
(-323 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1230,7 +1230,7 @@ NIL
NIL
(-325 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4432 . T) (-4431 . T))
+((-4438 . T) (-4437 . T))
((|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-797))))
(-326 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
@@ -1246,19 +1246,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))))
(-329 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4431 . T) (-4432 . T) (-4434 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-330 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4438 . T) (-4437 . T))
-((-3972 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3972 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
-(-331 S -3508)
+((-4444 . T) (-4443 . T))
+((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+(-331 S -3514)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-372))))
-(-332 -3508)
+(-332 -3514)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-333)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")))
@@ -1276,7 +1276,7 @@ NIL
((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}.")))
NIL
NIL
-(-337 -3508 UP UPUP R)
+(-337 -3514 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
@@ -1284,11 +1284,11 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}")))
NIL
NIL
-(-339 S -3508 UP UPUP R)
+(-339 S -3514 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-340 -3508 UP UPUP R)
+(-340 -3514 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
@@ -1302,19 +1302,19 @@ NIL
NIL
(-343 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4431 . T) (-4432 . T) (-4434 . T))
+((-4437 . T) (-4438 . T) (-4440 . T))
((|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-382)))) (|HasCategory| $ (QUOTE (-1055))) (|HasCategory| $ (LIST (QUOTE -1044) (QUOTE (-551)))))
(-344 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((-3972 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-372)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-372))) (|HasCategory| (-912 |#1|) (QUOTE (-145))))
-(-345 S -3508 UP UPUP)
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((-3978 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-372)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-372))) (|HasCategory| (-912 |#1|) (QUOTE (-145))))
+(-345 S -3514 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-367))))
-(-346 -3508 UP UPUP)
+(-346 -3514 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4430 |has| (-412 |#2|) (-367)) (-4435 |has| (-412 |#2|) (-367)) (-4429 |has| (-412 |#2|) (-367)) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4436 |has| (-412 |#2|) (-367)) (-4441 |has| (-412 |#2|) (-367)) (-4435 |has| (-412 |#2|) (-367)) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-347 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
@@ -1322,16 +1322,16 @@ NIL
NIL
(-348 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((-3972 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-372)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-372))) (|HasCategory| (-912 |#1|) (QUOTE (-145))))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((-3978 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-372)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-372))) (|HasCategory| (-912 |#1|) (QUOTE (-145))))
(-349 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((-3972 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((-3978 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
(-350 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((-3972 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((-3978 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
(-351 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1346,51 +1346,51 @@ NIL
NIL
(-354)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-355 R UP -3508)
+(-355 R UP -3514)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-356 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((-3972 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-372)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-372))) (|HasCategory| (-912 |#1|) (QUOTE (-145))))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((-3978 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-372)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-372))) (|HasCategory| (-912 |#1|) (QUOTE (-145))))
(-357 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((-3972 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((-3978 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
(-358 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((-3972 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((-3978 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
(-359 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((-3972 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((-3978 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
(-360 GF)
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-361 -3508 GF)
+(-361 -3514 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-362 -3508 FP FPP)
+(-362 -3514 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-363 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((-3972 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((-3978 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
(-364 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
(-365 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4434 . T))
+((-4440 . T))
NIL
(-366 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1398,7 +1398,7 @@ NIL
NIL
(-367)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-368 S)
((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
@@ -1414,7 +1414,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-562))))
(-371 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4434 |has| |#1| (-562)) (-4432 . T) (-4431 . T))
+((-4440 |has| |#1| (-562)) (-4438 . T) (-4437 . T))
NIL
(-372)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1426,15 +1426,15 @@ NIL
((|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-367))))
(-374 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4431 . T) (-4432 . T) (-4434 . T))
+((-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-375 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4438)) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1107))))
+((|HasAttribute| |#1| (QUOTE -4444)) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1107))))
(-376 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4437 . T))
+((-4443 . T))
NIL
(-377 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1442,7 +1442,7 @@ NIL
NIL
(-378 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4432 . T) (-4431 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4438 . T) (-4437 . T))
NIL
(-379 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1454,11 +1454,11 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))))
(-381 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4434 . T))
+((-4440 . T))
NIL
(-382)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4420 . T) (-4428 . T) (-4213 . T) (-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4426 . T) (-4434 . T) (-4219 . T) (-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-383 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1470,11 +1470,11 @@ NIL
NIL
(-385 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4432 . T) (-4431 . T))
+((-4438 . T) (-4437 . T))
((|HasCategory| |#1| (QUOTE (-173))))
(-386 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4432 . T) (-4431 . T))
+((-4438 . T) (-4437 . T))
((|HasCategory| |#1| (QUOTE (-173))))
(-387)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
@@ -1482,7 +1482,7 @@ NIL
NIL
(-388 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4432 . T) (-4431 . T))
+((-4438 . T) (-4437 . T))
NIL
(-389)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
@@ -1498,7 +1498,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-855))))
(-392)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-393)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
@@ -1510,13 +1510,13 @@ NIL
NIL
(-395 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4432 . T) (-4431 . T))
+((-4438 . T) (-4437 . T))
NIL
(-396)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-397 -3508 UP UPUP R)
+(-397 -3514 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1540,11 +1540,11 @@ NIL
((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-403 -3985 |returnType| -1512 |symbols|)
+(-403 -3991 |returnType| -1513 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-404 -3508 UP)
+(-404 -3514 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
@@ -1558,28 +1558,28 @@ NIL
NIL
(-407)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-408 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4420)) (|HasAttribute| |#1| (QUOTE -4428)))
+((|HasAttribute| |#1| (QUOTE -4426)) (|HasAttribute| |#1| (QUOTE -4434)))
(-409)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-4213 . T) (-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4219 . T) (-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-410 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -312) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -289) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-1227))) (-3972 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-1227)))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-457))))
+((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -312) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -289) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-1227))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-1227)))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-457))))
(-411 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
(-412 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4424 -12 (|has| |#1| (-6 -4435)) (|has| |#1| (-457)) (|has| |#1| (-6 -4424))) (-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-825))) (-3972 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-855)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-550))) (-12 (|HasAttribute| |#1| (QUOTE -4424)) (|HasAttribute| |#1| (QUOTE -4435)) (|HasCategory| |#1| (QUOTE (-457)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
+((-4430 -12 (|has| |#1| (-6 -4441)) (|has| |#1| (-457)) (|has| |#1| (-6 -4430))) (-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-825))) (-3978 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-855)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-550))) (-12 (|HasAttribute| |#1| (QUOTE -4430)) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-413 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
@@ -1590,7 +1590,7 @@ NIL
NIL
(-415 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4431 . T) (-4432 . T) (-4434 . T))
+((-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-416 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
@@ -1600,15 +1600,15 @@ NIL
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-418 R -3508 UP A)
+(-418 R -3514 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}.")))
-((-4434 . T))
+((-4440 . T))
NIL
(-419 R1 F1 U1 A1 R2 F2 U2 A2)
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}")))
NIL
NIL
-(-420 R -3508 UP A |ibasis|)
+(-420 R -3514 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")))
NIL
((|HasCategory| |#4| (LIST (QUOTE -1044) (|devaluate| |#2|))))
@@ -1622,7 +1622,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-367))))
(-423 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4434 |has| |#1| (-562)) (-4432 . T) (-4431 . T))
+((-4440 |has| |#1| (-562)) (-4438 . T) (-4437 . T))
NIL
(-424 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}.")))
@@ -1634,7 +1634,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))))
(-426 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4434 -3972 (|has| |#1| (-1055)) (|has| |#1| (-478))) (-4432 |has| |#1| (-173)) (-4431 |has| |#1| (-173)) ((-4439 "*") |has| |#1| (-562)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-562)) (-4429 |has| |#1| (-562)))
+((-4440 -3978 (|has| |#1| (-1055)) (|has| |#1| (-478))) (-4438 |has| |#1| (-173)) (-4437 |has| |#1| (-173)) ((-4445 "*") |has| |#1| (-562)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-562)) (-4435 |has| |#1| (-562)))
NIL
(-427 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
@@ -1654,33 +1654,33 @@ NIL
((|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-372))))
(-431 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4437 . T) (-4427 . T) (-4438 . T))
+((-4443 . T) (-4433 . T) (-4444 . T))
NIL
(-432 S A R B)
((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
NIL
-(-433 R -3508)
+(-433 R -3514)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-434 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4424 -12 (|has| |#1| (-6 -4424)) (|has| |#2| (-6 -4424))) (-4431 . T) (-4432 . T) (-4434 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4424)) (|HasAttribute| |#2| (QUOTE -4424))))
-(-435 R -3508)
+((-4430 -12 (|has| |#1| (-6 -4430)) (|has| |#2| (-6 -4430))) (-4437 . T) (-4438 . T) (-4440 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4430)) (|HasAttribute| |#2| (QUOTE -4430))))
+(-435 R -3514)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-436 R -3508)
+(-436 R -3514)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-437 R -3508)
+(-437 R -3514)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-438 R -3508)
+(-438 R -3514)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1688,7 +1688,7 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-440 R -3508 UP)
+(-440 R -3514 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-48)))))
@@ -1720,7 +1720,7 @@ NIL
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-448 R UP -3508)
+(-448 R UP -3514)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1758,16 +1758,16 @@ NIL
NIL
(-457)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-458 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4434 |has| (-412 (-952 |#1|)) (-562)) (-4432 . T) (-4431 . T))
+((-4440 |has| (-412 (-952 |#1|)) (-562)) (-4438 . T) (-4437 . T))
((|HasCategory| (-412 (-952 |#1|)) (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| (-412 (-952 |#1|)) (QUOTE (-562))))
(-459 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4439 "*") |has| |#2| (-173)) (-4430 |has| |#2| (-562)) (-4435 |has| |#2| (-6 -4435)) (-4432 . T) (-4431 . T) (-4434 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3972 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3972 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3972 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4435)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4445 "*") |has| |#2| (-173)) (-4436 |has| |#2| (-562)) (-4441 |has| |#2| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#2| (QUOTE (-916))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3978 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3978 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-460 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1794,7 +1794,7 @@ NIL
NIL
(-466 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4432 . T) (-4431 . T))
+((-4438 . T) (-4437 . T))
NIL
(-467 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1802,7 +1802,7 @@ NIL
NIL
(-468 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4438 . T) (-4437 . T))
+((-4444 . T) (-4443 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-868)))))
(-469 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
@@ -1832,7 +1832,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-476 |lv| -3508 R)
+(-476 |lv| -3514 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1842,23 +1842,23 @@ NIL
NIL
(-478)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4434 . T))
+((-4440 . T))
NIL
(-479 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-367)) (-4429 |has| |#1| (-367)) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-551)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasSignature| |#1| (LIST (QUOTE -4390) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4256) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3497) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-551)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4262) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))))
(-480 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4438 . T))
-((-12 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4304) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2263) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (-3972 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (-3972 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-855))) (-3972 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107))))
+((-4444 . T))
+((-12 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-855))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107))))
(-481 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4438 . T) (-4437 . T))
+((-4444 . T) (-4443 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-868)))))
(-482)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-483)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
@@ -1866,29 +1866,29 @@ NIL
NIL
(-484 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4304) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2263) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (-3972 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (-3972 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1107))) (-3972 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1107))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))))
(-485)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-486 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4439 "*") |has| |#2| (-173)) (-4430 |has| |#2| (-562)) (-4435 |has| |#2| (-6 -4435)) (-4432 . T) (-4431 . T) (-4434 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3972 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3972 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3972 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4435)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-487 -3033 S)
+(((-4445 "*") |has| |#2| (-173)) (-4436 |has| |#2| (-562)) (-4441 |has| |#2| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#2| (QUOTE (-916))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3978 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3978 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-487 -3039 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4431 |has| |#2| (-1055)) (-4432 |has| |#2| (-1055)) (-4434 |has| |#2| (-6 -4434)) ((-4439 "*") |has| |#2| (-173)) (-4437 . T))
-((-3972 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-367))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-3972 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3972 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (QUOTE (-234))) (-3972 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))))) (|HasCategory| (-551) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasAttribute| |#2| (QUOTE -4434)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))))
+((-4437 |has| |#2| (-1055)) (-4438 |has| |#2| (-1055)) (-4440 |has| |#2| (-6 -4440)) ((-4445 "*") |has| |#2| (-173)) (-4443 . T))
+((-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-367))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-3978 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3978 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (QUOTE (-234))) (-3978 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))))) (|HasCategory| (-551) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasAttribute| |#2| (QUOTE -4440)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))))
(-488)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
NIL
(-489 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
-(-490 -3508 UP UPUP R)
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+(-490 -3514 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1898,12 +1898,12 @@ NIL
NIL
(-492)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| (-551) (QUOTE (-916))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-551) (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-147))) (|HasCategory| (-551) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-551) (QUOTE (-1026))) (|HasCategory| (-551) (QUOTE (-825))) (-3972 (|HasCategory| (-551) (QUOTE (-825))) (|HasCategory| (-551) (QUOTE (-855)))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-1157))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-551) (QUOTE (-234))) (|HasCategory| (-551) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-551) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -312) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -289) (QUOTE (-551)) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-310))) (|HasCategory| (-551) (QUOTE (-550))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-551) (LIST (QUOTE -644) (QUOTE (-551)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (-3972 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (|HasCategory| (-551) (QUOTE (-145)))))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| (-551) (QUOTE (-916))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-551) (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-147))) (|HasCategory| (-551) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-551) (QUOTE (-1026))) (|HasCategory| (-551) (QUOTE (-825))) (-3978 (|HasCategory| (-551) (QUOTE (-825))) (|HasCategory| (-551) (QUOTE (-855)))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-1157))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-551) (QUOTE (-234))) (|HasCategory| (-551) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-551) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -312) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -289) (QUOTE (-551)) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-310))) (|HasCategory| (-551) (QUOTE (-550))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-551) (LIST (QUOTE -644) (QUOTE (-551)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (-3978 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (|HasCategory| (-551) (QUOTE (-145)))))
(-493 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4437)) (|HasAttribute| |#1| (QUOTE -4438)) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))))
+((|HasAttribute| |#1| (QUOTE -4443)) (|HasAttribute| |#1| (QUOTE -4444)) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))))
(-494 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
@@ -1924,33 +1924,33 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-499 -3508 UP |AlExt| |AlPol|)
+(-499 -3514 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-500)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
((|HasCategory| $ (QUOTE (-1055))) (|HasCategory| $ (LIST (QUOTE -1044) (QUOTE (-551)))))
(-501 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4438 . T) (-4437 . T))
-((-3972 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3972 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4444 . T) (-4443 . T))
+((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-502 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
(-503 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented")))
NIL
NIL
-(-504 R UP -3508)
+(-504 R UP -3514)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-505 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4438 . T) (-4437 . T))
+((-4444 . T) (-4443 . T))
((-12 (|HasCategory| (-112) (QUOTE (-1107))) (|HasCategory| (-112) (LIST (QUOTE -312) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-112) (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-112) (QUOTE (-1107))) (|HasCategory| (-112) (LIST (QUOTE -618) (QUOTE (-868)))))
(-506 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
@@ -1964,7 +1964,7 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-509 -3508 |Expon| |VarSet| |DPoly|)
+(-509 -3514 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-1183)))))
@@ -2014,36 +2014,36 @@ NIL
((|HasCategory| |#2| (QUOTE (-797))))
(-521 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4438 . T) (-4437 . T))
-((-3972 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3972 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4444 . T) (-4443 . T))
+((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-522)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
(-523 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((-3972 (|HasCategory| (-586 |#1|) (QUOTE (-145))) (|HasCategory| (-586 |#1|) (QUOTE (-372)))) (|HasCategory| (-586 |#1|) (QUOTE (-147))) (|HasCategory| (-586 |#1|) (QUOTE (-372))) (|HasCategory| (-586 |#1|) (QUOTE (-145))))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((-3978 (|HasCategory| (-586 |#1|) (QUOTE (-145))) (|HasCategory| (-586 |#1|) (QUOTE (-372)))) (|HasCategory| (-586 |#1|) (QUOTE (-147))) (|HasCategory| (-586 |#1|) (QUOTE (-372))) (|HasCategory| (-586 |#1|) (QUOTE (-145))))
(-524 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
(-525 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4438 . T) (-4437 . T))
-((-3972 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3972 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4444 . T) (-4443 . T))
+((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-526 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4438)))
+((|HasAttribute| |#3| (QUOTE -4444)))
(-527 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4438)))
+((|HasAttribute| |#7| (QUOTE -4444)))
(-528 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4439 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4445 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
(-529)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
@@ -2076,7 +2076,7 @@ NIL
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-537 K -3508 |Par|)
+(-537 K -3514 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -2100,7 +2100,7 @@ NIL
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-543 K -3508 |Par|)
+(-543 K -3514 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -2130,11 +2130,11 @@ NIL
NIL
(-550)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4435 . T) (-4436 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4441 . T) (-4442 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-551)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4419 . T) (-4425 . T) (-4429 . T) (-4424 . T) (-4435 . T) (-4436 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4425 . T) (-4431 . T) (-4435 . T) (-4430 . T) (-4441 . T) (-4442 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-552)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
@@ -2154,13 +2154,13 @@ NIL
NIL
(-556 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4304) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2263) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (-3972 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (-3972 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1107))) (-3972 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))))
-(-557 R -3508)
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1107))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))))
+(-557 R -3514)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-558 R0 -3508 UP UPUP R)
+(-558 R0 -3514 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
@@ -2170,7 +2170,7 @@ NIL
NIL
(-560 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-4213 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4219 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-561 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
@@ -2178,9 +2178,9 @@ NIL
NIL
(-562)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-563 R -3508)
+(-563 R -3514)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
@@ -2192,7 +2192,7 @@ NIL
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-566 R -3508 L)
+(-566 R -3514 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -663) (|devaluate| |#2|))))
@@ -2200,11 +2200,11 @@ NIL
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-568 -3508 UP UPUP R)
+(-568 -3514 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-569 -3508 UP)
+(-569 -3514 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
@@ -2212,15 +2212,15 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-571 R -3508 L)
+(-571 R -3514 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -663) (|devaluate| |#2|))))
-(-572 R -3508)
+(-572 R -3514)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-635)))))
-(-573 -3508 UP)
+(-573 -3514 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2228,27 +2228,27 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-575 -3508)
+(-575 -3514)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-576 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-4213 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4219 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-577)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-578 R -3508)
+(-578 R -3514)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-287))) (|HasCategory| |#2| (QUOTE (-635))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-287)))) (|HasCategory| |#1| (QUOTE (-562))))
-(-579 -3508 UP)
+(-579 -3514 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-580 R -3508)
+(-580 R -3514)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
@@ -2270,30 +2270,30 @@ NIL
NIL
(-585 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-586 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-372))))
(-587)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-588 -3508)
+(-588 -3514)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4432 . T) (-4431 . T))
+((-4438 . T) (-4437 . T))
((|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-1183)))))
-(-589 E -3508)
+(-589 E -3514)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented")))
NIL
NIL
-(-590 R -3508)
+(-590 R -3514)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
(-591)
-((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")))
+((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}")))
NIL
NIL
(-592 I)
@@ -2322,22 +2322,22 @@ NIL
NIL
(-598 |mn|)
((|constructor| (NIL "This domain implements low-level strings")))
-((-4438 . T) (-4437 . T))
-((-3972 (-12 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (-3972 (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-540)))) (-3972 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1107)))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))))
+((-4444 . T) (-4443 . T))
+((-3978 (-12 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (-3978 (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1107)))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))))
(-599 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-600 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|)))) (|HasCategory| (-551) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4390) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|)))) (|HasCategory| (-551) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))))
(-601 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-(((-4439 "*") |has| |#1| (-562)) (-4430 |has| |#1| (-562)) (-4431 . T) (-4432 . T) (-4434 . T))
+(((-4445 "*") |has| |#1| (-562)) (-4436 |has| |#1| (-562)) (-4437 . T) (-4438 . T) (-4440 . T))
((|HasCategory| |#1| (QUOTE (-562))))
(-602)
-((|constructor| (NIL "This domain provides representations for internal type form.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context")))
+((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context")))
NIL
NIL
(-603 A B)
@@ -2348,7 +2348,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented")))
NIL
NIL
-(-605 R -3508 FG)
+(-605 R -3514 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2358,12 +2358,12 @@ NIL
NIL
(-607 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4438 . T) (-4437 . T))
-((-3972 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3972 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1008))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4444 . T) (-4443 . T))
+((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1008))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-608 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4438)) (|HasCategory| |#2| (QUOTE (-855))) (|HasAttribute| |#1| (QUOTE -4437)) (|HasCategory| |#3| (QUOTE (-1107))))
+((|HasAttribute| |#1| (QUOTE -4444)) (|HasCategory| |#2| (QUOTE (-855))) (|HasAttribute| |#1| (QUOTE -4443)) (|HasCategory| |#3| (QUOTE (-1107))))
(-609 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
@@ -2378,19 +2378,19 @@ NIL
NIL
(-612 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4434 -3972 (-3268 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))) (-4432 . T) (-4431 . T))
-((-3972 (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))))
+((-4440 -3978 (-3274 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))) (-4438 . T) (-4437 . T))
+((-3978 (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))))
(-613 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 |#1|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4304) (QUOTE (-1165))) (LIST (QUOTE |:|) (QUOTE -2263) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 |#1|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 |#1|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| (-1165) (QUOTE (-855))) (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 |#1|)) (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 |#1|)) (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (QUOTE (-1165))) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| (-1165) (QUOTE (-855))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (LIST (QUOTE -618) (QUOTE (-868)))))
(-614 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
(-615 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4438 . T))
+((-4444 . T))
NIL
(-616 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op.")))
@@ -2408,7 +2408,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-620 -3508 UP)
+(-620 -3514 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2426,7 +2426,7 @@ NIL
NIL
(-624 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4431 . T) (-4432 . T) (-4434 . T))
+((-4437 . T) (-4438 . T) (-4440 . T))
((|HasCategory| |#1| (QUOTE (-853))))
(-625 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
@@ -2434,15 +2434,15 @@ NIL
NIL
(-626 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4434 . T))
+((-4440 . T))
NIL
-(-627 R -3508)
+(-627 R -3514)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform.")))
NIL
NIL
(-628 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4432 . T) (-4431 . T) ((-4439 "*") . T) (-4430 . T) (-4434 . T))
+((-4438 . T) (-4437 . T) ((-4445 "*") . T) (-4436 . T) (-4440 . T))
((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))))
(-629 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
@@ -2458,13 +2458,13 @@ NIL
NIL
(-632 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4434 . T))
+((-4440 . T))
NIL
(-633 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
NIL
NIL
-(-634 R -3508)
+(-634 R -3514)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
@@ -2472,25 +2472,25 @@ NIL
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-636 |lv| -3508)
+(-636 |lv| -3514)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-637)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4438 . T))
-((-12 (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 (-51))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4304) (QUOTE (-1165))) (LIST (QUOTE |:|) (QUOTE -2263) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 (-51))) (QUOTE (-1107)))) (-3972 (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 (-51))) (QUOTE (-1107)))) (-3972 (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 (-51))) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 (-51))) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -312) (QUOTE (-51))))) (|HasCategory| (-1165) (QUOTE (-855))) (-3972 (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 (-51))) (QUOTE (-1107))))
+((-4444 . T))
+((-12 (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (QUOTE (-1165))) (LIST (QUOTE |:|) (QUOTE -2264) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (QUOTE (-1107)))) (-3978 (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (QUOTE (-1107)))) (-3978 (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -312) (QUOTE (-51))))) (|HasCategory| (-1165) (QUOTE (-855))) (-3978 (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 (-51))) (QUOTE (-1107))))
(-638 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4434 -3972 (-3268 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))) (-4432 . T) (-4431 . T))
-((-3972 (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))))
+((-4440 -3978 (-3274 (|has| |#2| (-371 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))) (-4438 . T) (-4437 . T))
+((-3978 (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))))
(-639 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-367))))
(-640 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4432 . T) (-4431 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4438 . T) (-4437 . T))
NIL
(-641 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
@@ -2503,10 +2503,10 @@ NIL
(-643 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-3758 (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-367))))
+((-3764 (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-367))))
(-644 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4434 . T))
+((-4440 . T))
NIL
(-645 R)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-linear set if it is stable by dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{Module} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet,{} RightLinearSet.")))
@@ -2514,8 +2514,8 @@ NIL
NIL
(-646 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list.")))
-((-4438 . T) (-4437 . T))
-((-3972 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3972 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-826))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4444 . T) (-4443 . T))
+((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-826))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-647 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}.")))
NIL
@@ -2538,8 +2538,8 @@ NIL
NIL
(-652 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
(-653 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
@@ -2551,30 +2551,30 @@ NIL
(-655 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4438)))
+((|HasAttribute| |#1| (QUOTE -4444)))
(-656 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
(-657 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4432 . T) (-4431 . T))
+((-4438 . T) (-4437 . T))
((|HasCategory| |#1| (QUOTE (-796))))
-(-658 R -3508 L)
+(-658 R -3514 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-659 A -2832)
+(-659 A -2838)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4431 . T) (-4432 . T) (-4434 . T))
+((-4437 . T) (-4438 . T) (-4440 . T))
((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367))))
(-660 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4431 . T) (-4432 . T) (-4434 . T))
+((-4437 . T) (-4438 . T) (-4440 . T))
((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367))))
(-661 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4431 . T) (-4432 . T) (-4434 . T))
+((-4437 . T) (-4438 . T) (-4440 . T))
((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367))))
(-662 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
@@ -2582,9 +2582,9 @@ NIL
((|HasCategory| |#2| (QUOTE (-367))))
(-663 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4431 . T) (-4432 . T) (-4434 . T))
+((-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-664 -3508 UP)
+(-664 -3514 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
@@ -2606,7 +2606,7 @@ NIL
NIL
(-669 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4432 . T) (-4431 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4438 . T) (-4437 . T))
((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-173))))
(-670 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
@@ -2614,13 +2614,13 @@ NIL
NIL
(-671 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4438 . T) (-4437 . T))
+((-4444 . T) (-4443 . T))
NIL
-(-672 -3508 |Row| |Col| M)
+(-672 -3514 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-673 -3508)
+(-673 -3514)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
@@ -2630,8 +2630,8 @@ NIL
NIL
(-675 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4434 . T) (-4437 . T) (-4431 . T) (-4432 . T))
-((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE (-4439 #1="*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-562))) (-3972 (|HasAttribute| |#2| (QUOTE (-4439 #1#))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-173))))
+((-4440 . T) (-4443 . T) (-4437 . T) (-4438 . T))
+((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE (-4445 #1="*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-562))) (-3978 (|HasAttribute| |#2| (QUOTE (-4445 #1#))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-173))))
(-676)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
@@ -2651,7 +2651,7 @@ NIL
(-680 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms")))
NIL
-((-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-681)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
@@ -2691,10 +2691,10 @@ NIL
(-690 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4439 "*"))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-562))))
+((|HasAttribute| |#2| (QUOTE (-4445 "*"))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-562))))
(-691 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4437 . T) (-4438 . T))
+((-4443 . T) (-4444 . T))
NIL
(-692 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
@@ -2706,8 +2706,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-562))))
(-694 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4437 . T) (-4438 . T))
-((-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4439 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4443 . T) (-4444 . T))
+((-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4445 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-695 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
@@ -2716,7 +2716,7 @@ NIL
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%.")))
NIL
NIL
-(-697 S -3508 FLAF FLAS)
+(-697 S -3514 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2726,11 +2726,11 @@ NIL
NIL
(-699)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4430 . T) (-4435 |has| (-704) (-367)) (-4429 |has| (-704) (-367)) (-1466 . T) (-4436 |has| (-704) (-6 -4436)) (-4433 |has| (-704) (-6 -4433)) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| (-704) (QUOTE (-147))) (|HasCategory| (-704) (QUOTE (-145))) (|HasCategory| (-704) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-704) (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| (-704) (QUOTE (-372))) (|HasCategory| (-704) (QUOTE (-367))) (-3972 (|HasCategory| (-704) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-704) (QUOTE (-367)))) (|HasCategory| (-704) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-704) (QUOTE (-234))) (-3972 (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-354)))) (|HasCategory| (-704) (QUOTE (-354))) (|HasCategory| (-704) (LIST (QUOTE -289) (QUOTE (-704)) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -312) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-704) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-704) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-704) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (-3972 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-354)))) (|HasCategory| (-704) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-704) (QUOTE (-1026))) (|HasCategory| (-704) (QUOTE (-1208))) (-12 (|HasCategory| (-704) (QUOTE (-1008))) (|HasCategory| (-704) (QUOTE (-1208)))) (-3972 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (-12 (|HasCategory| (-704) (QUOTE (-354))) (|HasCategory| (-704) (QUOTE (-916)))) (|HasCategory| (-704) (QUOTE (-367)))) (-3972 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (-12 (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-916)))) (-12 (|HasCategory| (-704) (QUOTE (-354))) (|HasCategory| (-704) (QUOTE (-916))))) (|HasCategory| (-704) (QUOTE (-550))) (-12 (|HasCategory| (-704) (QUOTE (-1066))) (|HasCategory| (-704) (QUOTE (-1208)))) (|HasCategory| (-704) (QUOTE (-1066))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916))) (-3972 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (|HasCategory| (-704) (QUOTE (-367)))) (-3972 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (|HasCategory| (-704) (QUOTE (-562)))) (-12 (|HasCategory| (-704) (QUOTE (-234))) (|HasCategory| (-704) (QUOTE (-367)))) (-12 (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| (-704) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-704) (QUOTE (-562))) (|HasAttribute| (-704) (QUOTE -4436)) (|HasAttribute| (-704) (QUOTE -4433)) (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (-3972 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (|HasCategory| (-704) (QUOTE (-145)))) (-3972 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (|HasCategory| (-704) (QUOTE (-354)))))
+((-4436 . T) (-4441 |has| (-704) (-367)) (-4435 |has| (-704) (-367)) (-1466 . T) (-4442 |has| (-704) (-6 -4442)) (-4439 |has| (-704) (-6 -4439)) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| (-704) (QUOTE (-147))) (|HasCategory| (-704) (QUOTE (-145))) (|HasCategory| (-704) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-704) (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| (-704) (QUOTE (-372))) (|HasCategory| (-704) (QUOTE (-367))) (-3978 (|HasCategory| (-704) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-704) (QUOTE (-367)))) (|HasCategory| (-704) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-704) (QUOTE (-234))) (-3978 (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-354)))) (|HasCategory| (-704) (QUOTE (-354))) (|HasCategory| (-704) (LIST (QUOTE -289) (QUOTE (-704)) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -312) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-704) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-704) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-704) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (-3978 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-354)))) (|HasCategory| (-704) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-704) (QUOTE (-1026))) (|HasCategory| (-704) (QUOTE (-1208))) (-12 (|HasCategory| (-704) (QUOTE (-1008))) (|HasCategory| (-704) (QUOTE (-1208)))) (-3978 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (-12 (|HasCategory| (-704) (QUOTE (-354))) (|HasCategory| (-704) (QUOTE (-916)))) (|HasCategory| (-704) (QUOTE (-367)))) (-3978 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (-12 (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-916)))) (-12 (|HasCategory| (-704) (QUOTE (-354))) (|HasCategory| (-704) (QUOTE (-916))))) (|HasCategory| (-704) (QUOTE (-550))) (-12 (|HasCategory| (-704) (QUOTE (-1066))) (|HasCategory| (-704) (QUOTE (-1208)))) (|HasCategory| (-704) (QUOTE (-1066))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916))) (-3978 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (|HasCategory| (-704) (QUOTE (-367)))) (-3978 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (|HasCategory| (-704) (QUOTE (-562)))) (-12 (|HasCategory| (-704) (QUOTE (-234))) (|HasCategory| (-704) (QUOTE (-367)))) (-12 (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| (-704) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-704) (QUOTE (-562))) (|HasAttribute| (-704) (QUOTE -4442)) (|HasAttribute| (-704) (QUOTE -4439)) (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (-3978 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (|HasCategory| (-704) (QUOTE (-145)))) (-3978 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-916)))) (|HasCategory| (-704) (QUOTE (-354)))))
(-700 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4438 . T))
+((-4444 . T))
NIL
(-701 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
@@ -2740,13 +2740,13 @@ NIL
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
NIL
NIL
-(-703 OV E -3508 PG)
+(-703 OV E -3514 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-704)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-4213 . T) (-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4219 . T) (-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-705 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2754,7 +2754,7 @@ NIL
NIL
(-706)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4436 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4442 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-707 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
@@ -2772,7 +2772,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-711 S -3084 I)
+(-711 S -3090 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2782,7 +2782,7 @@ NIL
NIL
(-713 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4431 . T) (-4432 . T) (-4434 . T))
+((-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-714 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
@@ -2792,25 +2792,25 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-716 R |Mod| -2224 -3953 |exactQuo|)
+(-716 R |Mod| -2225 -3959 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-717 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4433 |has| |#1| (-367)) (-4435 |has| |#1| (-6 -4435)) (-4432 . T) (-4431 . T) (-4434 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1088) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3972 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4435)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4439 |has| |#1| (-367)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1088) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-718 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
(-719 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4432 |has| |#1| (-173)) (-4431 |has| |#1| (-173)) (-4434 . T))
+((-4438 |has| |#1| (-173)) (-4437 |has| |#1| (-173)) (-4440 . T))
((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
-(-720 R |Mod| -2224 -3953 |exactQuo|)
+(-720 R |Mod| -2225 -3959 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4434 . T))
+((-4440 . T))
NIL
(-721 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
@@ -2818,11 +2818,11 @@ NIL
NIL
(-722 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4432 . T) (-4431 . T))
+((-4438 . T) (-4437 . T))
NIL
-(-723 -3508)
+(-723 -3514)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}.")))
-((-4434 . T))
+((-4440 . T))
NIL
(-724 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
@@ -2846,7 +2846,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))))
(-729 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4430 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4429 |has| |#1| (-367)) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4436 |has| |#1| (-367)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-730 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
@@ -2856,7 +2856,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-732 -3508 UP)
+(-732 -3514 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2874,8 +2874,8 @@ NIL
NIL
(-736 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4439 "*") |has| |#2| (-173)) (-4430 |has| |#2| (-562)) (-4435 |has| |#2| (-6 -4435)) (-4432 . T) (-4431 . T) (-4434 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3972 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3972 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3972 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4435)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4445 "*") |has| |#2| (-173)) (-4436 |has| |#2| (-562)) (-4441 |has| |#2| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#2| (QUOTE (-916))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3978 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3978 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-737 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2890,15 +2890,15 @@ NIL
NIL
(-740 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4432 |has| |#1| (-173)) (-4431 |has| |#1| (-173)) (-4434 . T))
+((-4438 |has| |#1| (-173)) (-4437 |has| |#1| (-173)) (-4440 . T))
((-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-855))))
(-741 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4437 . T) (-4427 . T) (-4438 . T))
+((-4443 . T) (-4433 . T) (-4444 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
(-742 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4427 . T) (-4438 . T))
+((-4433 . T) (-4444 . T))
NIL
(-743)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
@@ -2910,7 +2910,7 @@ NIL
NIL
(-745 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4432 . T) (-4431 . T) (-4434 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4438 . T) (-4437 . T) (-4440 . T))
NIL
(-746 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -2926,7 +2926,7 @@ NIL
NIL
(-749 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4432 . T) (-4431 . T))
+((-4438 . T) (-4437 . T))
NIL
(-750)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
@@ -3008,11 +3008,11 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-770 -3508)
+(-770 -3514)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-771 P -3508)
+(-771 P -3514)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
@@ -3020,7 +3020,7 @@ NIL
NIL
NIL
NIL
-(-773 UP -3508)
+(-773 UP -3514)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -3034,9 +3034,9 @@ NIL
NIL
(-776)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4439 "*") . T))
+(((-4445 "*") . T))
NIL
-(-777 R -3508)
+(-777 R -3514)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
@@ -3056,7 +3056,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-782 -3508 |ExtF| |SUEx| |ExtP| |n|)
+(-782 -3514 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -3070,12 +3070,12 @@ NIL
NIL
(-785 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-6 -4435)) (-4432 . T) (-4431 . T) (-4434 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3972 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3972 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3972 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183))))) (-3972 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (-3758 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))))) (-3972 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (-3758 (|HasCategory| |#1| (QUOTE (-550)))) (-3758 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (-3758 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-551))))) (-3758 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (-3758 (|HasCategory| |#1| (LIST (QUOTE -997) (QUOTE (-551))))))) (|HasAttribute| |#1| (QUOTE -4435)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-916))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183))))) (-3978 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (-3764 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))))) (-3978 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (-3764 (|HasCategory| |#1| (QUOTE (-550)))) (-3764 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (-3764 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-551))))) (-3764 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (-3764 (|HasCategory| |#1| (LIST (QUOTE -997) (QUOTE (-551))))))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-786 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4433 |has| |#1| (-367)) (-4435 |has| |#1| (-6 -4435)) (-4432 . T) (-4431 . T) (-4434 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1088) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3972 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4435)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4439 |has| |#1| (-367)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1088) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-787 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
@@ -3086,7 +3086,7 @@ NIL
((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))))
(-789 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4438 . T) (-4437 . T))
+((-4444 . T) (-4443 . T))
NIL
(-790 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
@@ -3134,7 +3134,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-372))))
(-801 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4431 . T) (-4432 . T) (-4434 . T))
+((-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-802)
((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
@@ -3142,9 +3142,9 @@ NIL
NIL
(-803 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (-3972 (|HasCategory| (-1002 |#1|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3972 (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-1002 |#1|) (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1002 |#1|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-1002 |#1|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))))
-(-804 -3972 R OS S)
+((-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (-3978 (|HasCategory| (-1002 |#1|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-1002 |#1|) (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1002 |#1|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-1002 |#1|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))))
+(-804 -3978 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
@@ -3152,11 +3152,11 @@ NIL
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-806 R -3508 L)
+(-806 R -3514 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-807 R -3508)
+(-807 R -3514)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
@@ -3164,7 +3164,7 @@ NIL
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-809 R -3508)
+(-809 R -3514)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -3172,11 +3172,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-811 -3508 UP UPUP R)
+(-811 -3514 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-812 -3508 UP L LQ)
+(-812 -3514 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -3184,41 +3184,41 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-814 -3508 UP L LQ)
+(-814 -3514 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-815 -3508 UP)
+(-815 -3514 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-816 -3508 L UP A LO)
+(-816 -3514 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-817 -3508 UP)
+(-817 -3514 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-818 -3508 LO)
+(-818 -3514 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-819 -3508 LODO)
+(-819 -3514 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-820 -3033 S |f|)
+(-820 -3039 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4431 |has| |#2| (-1055)) (-4432 |has| |#2| (-1055)) (-4434 |has| |#2| (-6 -4434)) ((-4439 "*") |has| |#2| (-173)) (-4437 . T))
-((-3972 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-367))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-3972 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3972 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (QUOTE (-234))) (-3972 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))))) (|HasCategory| (-551) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasAttribute| |#2| (QUOTE -4434)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))))
+((-4437 |has| |#2| (-1055)) (-4438 |has| |#2| (-1055)) (-4440 |has| |#2| (-6 -4440)) ((-4445 "*") |has| |#2| (-173)) (-4443 . T))
+((-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-367))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-3978 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3978 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (QUOTE (-234))) (-3978 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))))) (|HasCategory| (-551) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasAttribute| |#2| (QUOTE -4440)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))))
(-821 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-6 -4435)) (-4432 . T) (-4431 . T) (-4434 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3972 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3972 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-823 (-1183)) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-823 (-1183)) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-823 (-1183)) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-823 (-1183)) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-823 (-1183)) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3972 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4435)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-916))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-823 (-1183)) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-823 (-1183)) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-823 (-1183)) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-823 (-1183)) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-823 (-1183)) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-822 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-4439 "*") |has| |#2| (-367)) (-4430 |has| |#2| (-367)) (-4435 |has| |#2| (-367)) (-4429 |has| |#2| (-367)) (-4434 . T) (-4432 . T) (-4431 . T))
+(((-4445 "*") |has| |#2| (-367)) (-4436 |has| |#2| (-367)) (-4441 |has| |#2| (-367)) (-4435 |has| |#2| (-367)) (-4440 . T) (-4438 . T) (-4437 . T))
((|HasCategory| |#2| (QUOTE (-367))))
(-823 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
@@ -3230,7 +3230,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-855))))
(-825)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-826)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
@@ -3262,7 +3262,7 @@ NIL
NIL
(-833 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4431 . T) (-4432 . T) (-4434 . T))
+((-4437 . T) (-4438 . T) (-4440 . T))
((|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-234))))
(-834)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
@@ -3270,7 +3270,7 @@ NIL
NIL
(-835 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4437 . T) (-4427 . T) (-4438 . T))
+((-4443 . T) (-4433 . T) (-4444 . T))
NIL
(-836)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
@@ -3278,15 +3278,15 @@ NIL
NIL
(-837 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4434 |has| |#1| (-853)))
-((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-21))) (-3972 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-853)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-3972 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-550))))
+((-4440 |has| |#1| (-853)))
+((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-21))) (-3978 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-853)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-3978 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-550))))
(-838 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
(-839 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4432 |has| |#1| (-173)) (-4431 |has| |#1| (-173)) (-4434 . T))
+((-4438 |has| |#1| (-173)) (-4437 |has| |#1| (-173)) (-4440 . T))
((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
(-840 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
@@ -3318,8 +3318,8 @@ NIL
NIL
(-847 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4434 |has| |#1| (-853)))
-((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-21))) (-3972 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-853)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-3972 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-550))))
+((-4440 |has| |#1| (-853)))
+((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-21))) (-3978 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-853)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-3978 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-550))))
(-848 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
@@ -3328,7 +3328,7 @@ NIL
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-850 -3033 S)
+(-850 -3039 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3342,7 +3342,7 @@ NIL
NIL
(-853)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4434 . T))
+((-4440 . T))
NIL
(-854 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
@@ -3358,19 +3358,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))))
(-857 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4431 . T) (-4432 . T) (-4434 . T))
+((-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-858 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
((|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562))))
-(-859 R |sigma| -3677)
+(-859 R |sigma| -3683)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4431 . T) (-4432 . T) (-4434 . T))
+((-4437 . T) (-4438 . T) (-4440 . T))
((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367))))
-(-860 |x| R |sigma| -3677)
+(-860 |x| R |sigma| -3683)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-4431 . T) (-4432 . T) (-4434 . T))
+((-4437 . T) (-4438 . T) (-4440 . T))
((|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-367))))
(-861 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")))
@@ -3414,7 +3414,7 @@ NIL
NIL
(-871 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4432 |has| |#1| (-173)) (-4431 |has| |#1| (-173)) (-4434 . T))
+((-4438 |has| |#1| (-173)) (-4437 |has| |#1| (-173)) (-4440 . T))
((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))))
(-872 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
@@ -3426,24 +3426,24 @@ NIL
NIL
(-874 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-875 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-876 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| (-874 |#1|) (QUOTE (-916))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-874 |#1|) (QUOTE (-145))) (|HasCategory| (-874 |#1|) (QUOTE (-147))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-874 |#1|) (QUOTE (-1026))) (|HasCategory| (-874 |#1|) (QUOTE (-825))) (-3972 (|HasCategory| (-874 |#1|) (QUOTE (-825))) (|HasCategory| (-874 |#1|) (QUOTE (-855)))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-874 |#1|) (QUOTE (-1157))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| (-874 |#1|) (QUOTE (-234))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -874) (|devaluate| |#1|)))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -312) (LIST (QUOTE -874) (|devaluate| |#1|)))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -289) (LIST (QUOTE -874) (|devaluate| |#1|)) (LIST (QUOTE -874) (|devaluate| |#1|)))) (|HasCategory| (-874 |#1|) (QUOTE (-310))) (|HasCategory| (-874 |#1|) (QUOTE (-550))) (|HasCategory| (-874 |#1|) (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-874 |#1|) (QUOTE (-916)))) (-3972 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-874 |#1|) (QUOTE (-916)))) (|HasCategory| (-874 |#1|) (QUOTE (-145)))))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| (-874 |#1|) (QUOTE (-916))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-874 |#1|) (QUOTE (-145))) (|HasCategory| (-874 |#1|) (QUOTE (-147))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-874 |#1|) (QUOTE (-1026))) (|HasCategory| (-874 |#1|) (QUOTE (-825))) (-3978 (|HasCategory| (-874 |#1|) (QUOTE (-825))) (|HasCategory| (-874 |#1|) (QUOTE (-855)))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-874 |#1|) (QUOTE (-1157))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| (-874 |#1|) (QUOTE (-234))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -874) (|devaluate| |#1|)))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -312) (LIST (QUOTE -874) (|devaluate| |#1|)))) (|HasCategory| (-874 |#1|) (LIST (QUOTE -289) (LIST (QUOTE -874) (|devaluate| |#1|)) (LIST (QUOTE -874) (|devaluate| |#1|)))) (|HasCategory| (-874 |#1|) (QUOTE (-310))) (|HasCategory| (-874 |#1|) (QUOTE (-550))) (|HasCategory| (-874 |#1|) (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-874 |#1|) (QUOTE (-916)))) (-3978 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-874 |#1|) (QUOTE (-916)))) (|HasCategory| (-874 |#1|) (QUOTE (-145)))))
(-877 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (QUOTE (-1026))) (|HasCategory| |#2| (QUOTE (-825))) (-3972 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-855)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-1157))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (QUOTE (-1026))) (|HasCategory| |#2| (QUOTE (-825))) (-3978 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-855)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-1157))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-878 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#2| (QUOTE (-1107)))) (-3972 (-12 (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#2| (QUOTE (-1107))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))))
+((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#2| (QUOTE (-1107)))) (-3978 (-12 (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#2| (QUOTE (-1107))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))))
(-879)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
@@ -3503,7 +3503,7 @@ NIL
(-893 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-3758 (|HasCategory| |#2| (QUOTE (-1055)))) (-3758 (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (-3758 (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))))
+((-12 (-3764 (|HasCategory| |#2| (QUOTE (-1055)))) (-3764 (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (-3764 (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))))
(-894 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
@@ -3516,7 +3516,7 @@ NIL
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-897 R -3084)
+(-897 R -3090)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
@@ -3536,7 +3536,7 @@ NIL
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-902 UP -3508)
+(-902 UP -3514)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
@@ -3554,23 +3554,23 @@ NIL
NIL
(-906 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4434 . T))
+((-4440 . T))
NIL
(-907 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
(-908 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4434 . T))
-((-3972 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-855)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-855))))
+((-4440 . T))
+((-3978 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-855)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-855))))
(-909 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
(-910 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4434 . T))
+((-4440 . T))
NIL
(-911 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
@@ -3578,7 +3578,7 @@ NIL
NIL
(-912 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-372))))
(-913 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
@@ -3594,9 +3594,9 @@ NIL
((|HasCategory| |#1| (QUOTE (-145))))
(-916)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-917 R0 -3508 UP UPUP R)
+(-917 R0 -3514 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
@@ -3610,7 +3610,7 @@ NIL
NIL
(-920 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-921 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
@@ -3624,13 +3624,13 @@ NIL
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}.")))
NIL
NIL
-(-924 -3508)
+(-924 -3514)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
(-925)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4439 "*") . T))
+(((-4445 "*") . T))
NIL
(-926 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
@@ -3638,13 +3638,13 @@ NIL
NIL
(-927)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
-(-928 |xx| -3508)
+(-928 |xx| -3514)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented")))
NIL
NIL
-(-929 -3508 P)
+(-929 -3514 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented")))
NIL
NIL
@@ -3672,7 +3672,7 @@ NIL
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-936 R -3508)
+(-936 R -3514)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
@@ -3680,7 +3680,7 @@ NIL
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-938 S R -3508)
+(-938 S R -3514)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
@@ -3700,11 +3700,11 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -892) (|devaluate| |#1|))))
-(-943 -3084)
+(-943 -3090)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-944 R -3508 -3084)
+(-944 R -3514 -3090)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
@@ -3726,8 +3726,8 @@ NIL
NIL
(-949 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4438 . T) (-4437 . T))
-((-3972 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3972 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1008))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4444 . T) (-4443 . T))
+((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1008))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-950 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
@@ -3738,8 +3738,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-853))))
(-952 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-6 -4435)) (-4432 . T) (-4431 . T) (-4434 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3972 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3972 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1183) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1183) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1183) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1183) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1183) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3972 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4435)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-916))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1183) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1183) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1183) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1183) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1183) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-953 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
@@ -3751,12 +3751,12 @@ NIL
(-955 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-916))) (|HasAttribute| |#2| (QUOTE -4435)) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#4| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#4| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#4| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))))
+((|HasCategory| |#2| (QUOTE (-916))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#4| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#4| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#4| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))))
(-956 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-6 -4435)) (-4432 . T) (-4431 . T) (-4434 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
NIL
-(-957 E V R P -3508)
+(-957 E V R P -3514)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
@@ -3764,7 +3764,7 @@ NIL
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-959 E V R P -3508)
+(-959 E V R P -3514)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-457))))
@@ -3778,16 +3778,16 @@ NIL
NIL
(-962 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-6 -4435)) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3972 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4435)))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4441)))
(-963 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}.")))
NIL
NIL
(-964 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4438 . T) (-4437 . T))
-((-3972 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3972 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4444 . T) (-4443 . T))
+((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-965 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
@@ -3796,7 +3796,7 @@ NIL
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-967 -3508)
+(-967 -3514)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
@@ -3810,8 +3810,8 @@ NIL
NIL
(-970 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented")))
-((-4434 -12 (|has| |#2| (-478)) (|has| |#1| (-478))))
-((-3972 (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-855))))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-372)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731))))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-855)))))
+((-4440 -12 (|has| |#2| (-478)) (|has| |#1| (-478))))
+((-3978 (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-855))))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-372)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731))))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-855)))))
(-971)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
@@ -3826,7 +3826,7 @@ NIL
NIL
(-974 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4437 . T) (-4438 . T))
+((-4443 . T) (-4444 . T))
NIL
(-975 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
@@ -3846,7 +3846,7 @@ NIL
NIL
(-979 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4431 . T) (-4432 . T) (-4434 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-980)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
@@ -3858,7 +3858,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-562))))
(-982 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4437 . T))
+((-4443 . T))
NIL
(-983 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
@@ -3874,7 +3874,7 @@ NIL
NIL
(-986 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4438 . T) (-4437 . T))
+((-4444 . T) (-4443 . T))
NIL
(-987 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented")))
@@ -3892,7 +3892,7 @@ NIL
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-991 K R UP -3508)
+(-991 K R UP -3514)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
@@ -3918,7 +3918,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (QUOTE (-1026))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-1157))))
(-997 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-998 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
@@ -3934,19 +3934,19 @@ NIL
NIL
(-1001 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4437 . T) (-4438 . T))
+((-4443 . T) (-4444 . T))
NIL
(-1002 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4430 |has| |#1| (-293)) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-367))) (-3972 (|HasCategory| |#1| (QUOTE (-293))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-293))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-550))))
+((-4436 |has| |#1| (-293)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-367))) (-3978 (|HasCategory| |#1| (QUOTE (-293))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-293))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-550))))
(-1003 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
((|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-293))))
(-1004 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4430 |has| |#1| (-293)) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4436 |has| |#1| (-293)) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-1005 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
@@ -3954,8 +3954,8 @@ NIL
NIL
(-1006 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
(-1007 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
@@ -3964,14 +3964,14 @@ NIL
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1009 -3508 UP UPUP |radicnd| |n|)
+(-1009 -3514 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4430 |has| (-412 |#2|) (-367)) (-4435 |has| (-412 |#2|) (-367)) (-4429 |has| (-412 |#2|) (-367)) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| (-412 |#2|) (QUOTE (-145))) (|HasCategory| (-412 |#2|) (QUOTE (-147))) (|HasCategory| (-412 |#2|) (QUOTE (-354))) (-3972 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-354)))) (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-372))) (-3972 (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (QUOTE (-354)))) (-3972 (-12 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-354))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -644) (QUOTE (-551)))) (-3972 (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))))
+((-4436 |has| (-412 |#2|) (-367)) (-4441 |has| (-412 |#2|) (-367)) (-4435 |has| (-412 |#2|) (-367)) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| (-412 |#2|) (QUOTE (-145))) (|HasCategory| (-412 |#2|) (QUOTE (-147))) (|HasCategory| (-412 |#2|) (QUOTE (-354))) (-3978 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-354)))) (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-372))) (-3978 (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (QUOTE (-354)))) (-3978 (-12 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-354))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -644) (QUOTE (-551)))) (-3978 (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))))
(-1010 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| (-551) (QUOTE (-916))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-551) (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-147))) (|HasCategory| (-551) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-551) (QUOTE (-1026))) (|HasCategory| (-551) (QUOTE (-825))) (-3972 (|HasCategory| (-551) (QUOTE (-825))) (|HasCategory| (-551) (QUOTE (-855)))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-1157))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-551) (QUOTE (-234))) (|HasCategory| (-551) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-551) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -312) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -289) (QUOTE (-551)) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-310))) (|HasCategory| (-551) (QUOTE (-550))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-551) (LIST (QUOTE -644) (QUOTE (-551)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (-3972 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (|HasCategory| (-551) (QUOTE (-145)))))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| (-551) (QUOTE (-916))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-551) (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-147))) (|HasCategory| (-551) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-551) (QUOTE (-1026))) (|HasCategory| (-551) (QUOTE (-825))) (-3978 (|HasCategory| (-551) (QUOTE (-825))) (|HasCategory| (-551) (QUOTE (-855)))) (|HasCategory| (-551) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-1157))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-551) (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-551) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-551) (QUOTE (-234))) (|HasCategory| (-551) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-551) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -312) (QUOTE (-551)))) (|HasCategory| (-551) (LIST (QUOTE -289) (QUOTE (-551)) (QUOTE (-551)))) (|HasCategory| (-551) (QUOTE (-310))) (|HasCategory| (-551) (QUOTE (-550))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-551) (LIST (QUOTE -644) (QUOTE (-551)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (-3978 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-551) (QUOTE (-916)))) (|HasCategory| (-551) (QUOTE (-145)))))
(-1011)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
@@ -3991,7 +3991,7 @@ NIL
(-1015 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4438)) (|HasCategory| |#2| (QUOTE (-1107))))
+((|HasAttribute| |#1| (QUOTE -4444)) (|HasCategory| |#2| (QUOTE (-1107))))
(-1016 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
@@ -4002,21 +4002,21 @@ NIL
NIL
(-1018)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4430 . T) (-4435 . T) (-4429 . T) (-4432 . T) (-4431 . T) ((-4439 "*") . T) (-4434 . T))
+((-4436 . T) (-4441 . T) (-4435 . T) (-4438 . T) (-4437 . T) ((-4445 "*") . T) (-4440 . T))
NIL
-(-1019 R -3508)
+(-1019 R -3514)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1020 R -3508)
+(-1020 R -3514)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1021 -3508 UP)
+(-1021 -3514 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1022 -3508 UP)
+(-1022 -3514 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -4050,9 +4050,9 @@ NIL
NIL
(-1030 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4430 . T) (-4435 . T) (-4429 . T) (-4432 . T) (-4431 . T) ((-4439 "*") . T) (-4434 . T))
-((-3972 (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-412 (-551)) (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-412 (-551)) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-412 (-551)) (LIST (QUOTE -1044) (QUOTE (-551)))))
-(-1031 -3508 L)
+((-4436 . T) (-4441 . T) (-4435 . T) (-4438 . T) (-4437 . T) ((-4445 "*") . T) (-4440 . T))
+((-3978 (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-412 (-551)) (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-412 (-551)) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-412 (-551)) (LIST (QUOTE -1044) (QUOTE (-551)))))
+(-1031 -3514 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
@@ -4062,7 +4062,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-1107))))
(-1033 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4438 . T) (-4437 . T))
+((-4444 . T) (-4443 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-868)))))
(-1034)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
@@ -4071,7 +4071,7 @@ NIL
(-1035 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4439 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4445 "*"))))
(-1036 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
@@ -4088,14 +4088,14 @@ NIL
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1040 -3508 |Expon| |VarSet| |FPol| |LFPol|)
+(-1040 -3514 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+(((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-1041)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| (-2 (|:| -4304 (-1183)) (|:| -2263 (-51))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4304) (QUOTE (-1183))) (LIST (QUOTE |:|) (QUOTE -2263) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4304 (-1183)) (|:| -2263 (-51))) (QUOTE (-1107)))) (-3972 (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4304 (-1183)) (|:| -2263 (-51))) (QUOTE (-1107)))) (-3972 (|HasCategory| (-2 (|:| -4304 (-1183)) (|:| -2263 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 (-1183)) (|:| -2263 (-51))) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4304 (-1183)) (|:| -2263 (-51))) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -312) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4304 (-1183)) (|:| -2263 (-51))) (QUOTE (-1107))) (|HasCategory| (-1183) (QUOTE (-855))) (|HasCategory| (-51) (QUOTE (-1107))) (-3972 (|HasCategory| (-2 (|:| -4304 (-1183)) (|:| -2263 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 (-1183)) (|:| -2263 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (QUOTE (-1183))) (LIST (QUOTE |:|) (QUOTE -2264) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (QUOTE (-1107)))) (-3978 (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (QUOTE (-1107)))) (-3978 (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -312) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (QUOTE (-1107))) (|HasCategory| (-1183) (QUOTE (-855))) (|HasCategory| (-51) (QUOTE (-1107))) (-3978 (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))))
(-1042)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
@@ -4138,7 +4138,7 @@ NIL
NIL
(-1052 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4438 . T) (-4437 . T))
+((-4444 . T) (-4443 . T))
((-12 (|HasCategory| (-785 |#1| (-869 |#2|)) (QUOTE (-1107))) (|HasCategory| (-785 |#1| (-869 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -785) (|devaluate| |#1|) (LIST (QUOTE -869) (|devaluate| |#2|)))))) (|HasCategory| (-785 |#1| (-869 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-785 |#1| (-869 |#2|)) (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| (-869 |#2|) (QUOTE (-372))) (|HasCategory| (-785 |#1| (-869 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))))
(-1053)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
@@ -4150,9 +4150,9 @@ NIL
NIL
(-1055)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4434 . T))
+((-4440 . T))
NIL
-(-1056 |xx| -3508)
+(-1056 |xx| -3514)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
@@ -4166,12 +4166,12 @@ NIL
((|HasCategory| |#4| (QUOTE (-310))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (QUOTE (-562))) (|HasCategory| |#4| (QUOTE (-173))))
(-1059 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4437 . T) (-4432 . T) (-4431 . T))
+((-4443 . T) (-4438 . T) (-4437 . T))
NIL
(-1060 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4437 . T) (-4432 . T) (-4431 . T))
-((|HasCategory| |#3| (QUOTE (-173))) (-3972 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-540)))) (-3972 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (QUOTE (-310))) (|HasCategory| |#3| (QUOTE (-562))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4438 . T) (-4437 . T))
+((|HasCategory| |#3| (QUOTE (-173))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (QUOTE (-310))) (|HasCategory| |#3| (QUOTE (-562))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-868)))))
(-1061 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
@@ -4194,7 +4194,7 @@ NIL
NIL
(-1066)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-1067 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
@@ -4202,19 +4202,19 @@ NIL
NIL
(-1068)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4425 . T) (-4429 . T) (-4424 . T) (-4435 . T) (-4436 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4431 . T) (-4435 . T) (-4430 . T) (-4441 . T) (-4442 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-1069)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| (-2 (|:| -4304 (-1183)) (|:| -2263 (-51))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4304) (QUOTE (-1183))) (LIST (QUOTE |:|) (QUOTE -2263) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4304 (-1183)) (|:| -2263 (-51))) (QUOTE (-1107)))) (-3972 (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4304 (-1183)) (|:| -2263 (-51))) (QUOTE (-1107)))) (-3972 (|HasCategory| (-2 (|:| -4304 (-1183)) (|:| -2263 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 (-1183)) (|:| -2263 (-51))) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4304 (-1183)) (|:| -2263 (-51))) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -312) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4304 (-1183)) (|:| -2263 (-51))) (QUOTE (-1107))) (|HasCategory| (-1183) (QUOTE (-855))) (|HasCategory| (-51) (QUOTE (-1107))) (-3972 (|HasCategory| (-2 (|:| -4304 (-1183)) (|:| -2263 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 (-1183)) (|:| -2263 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (QUOTE (-1183))) (LIST (QUOTE |:|) (QUOTE -2264) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (QUOTE (-1107)))) (-3978 (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (QUOTE (-1107)))) (-3978 (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| (-51) (QUOTE (-1107))) (|HasCategory| (-51) (LIST (QUOTE -312) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (QUOTE (-1107))) (|HasCategory| (-1183) (QUOTE (-855))) (|HasCategory| (-51) (QUOTE (-1107))) (-3978 (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| (-51) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 (-1183)) (|:| -2264 (-51))) (LIST (QUOTE -618) (QUOTE (-868)))))
(-1070 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -997) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-1183)))))
(-1071 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-6 -4435)) (-4432 . T) (-4431 . T) (-4434 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
NIL
(-1072)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
@@ -4238,7 +4238,7 @@ NIL
NIL
(-1077 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4438 . T) (-4437 . T))
+((-4444 . T) (-4443 . T))
NIL
(-1078 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
@@ -4252,7 +4252,7 @@ NIL
((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory.")))
NIL
NIL
-(-1081 |Base| R -3508)
+(-1081 |Base| R -3514)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
@@ -4260,7 +4260,7 @@ NIL
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1083 |Base| R -3508)
+(-1083 |Base| R -3514)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}.")))
NIL
NIL
@@ -4270,8 +4270,8 @@ NIL
NIL
(-1085 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4430 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4429 |has| |#1| (-367)) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-354))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-354)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))))
+((-4436 |has| |#1| (-367)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-354))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-354)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))))
(-1086 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
@@ -4302,8 +4302,8 @@ NIL
NIL
(-1093 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-6 -4435)) (-4432 . T) (-4431 . T) (-4434 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3972 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3972 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3972 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4435)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-916))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1094 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
@@ -4342,15 +4342,15 @@ NIL
NIL
(-1103 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}")))
-((-4437 . T) (-4427 . T) (-4438 . T))
-((-3972 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4443 . T) (-4433 . T) (-4444 . T))
+((-3978 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-1104 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
(-1105 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4427 . T))
+((-4433 . T))
NIL
(-1106 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
@@ -4390,7 +4390,7 @@ NIL
NIL
(-1115 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4438 . T) (-4437 . T))
+((-4444 . T) (-4443 . T))
NIL
(-1116)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
@@ -4406,8 +4406,8 @@ NIL
NIL
(-1119 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4431 |has| |#3| (-1055)) (-4432 |has| |#3| (-1055)) (-4434 |has| |#3| (-6 -4434)) ((-4439 "*") |has| |#3| (-173)) (-4437 . T))
-((-3972 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))))) (-3972 (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#3| (QUOTE (-367))) (-3972 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055)))) (-3972 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-798))) (-3972 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853)))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-731))) (-3972 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3972 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#3| (QUOTE (-234))) (-3972 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#3| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (-3972 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#3| (QUOTE (-1055)))) (-3972 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551)))))) (|HasCategory| (-551) (QUOTE (-855))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3972 (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#3| (QUOTE (-1055)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasAttribute| |#3| (QUOTE -4434)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))))
+((-4437 |has| |#3| (-1055)) (-4438 |has| |#3| (-1055)) (-4440 |has| |#3| (-6 -4440)) ((-4445 "*") |has| |#3| (-173)) (-4443 . T))
+((-3978 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#3| (QUOTE (-367))) (-3978 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055)))) (-3978 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-798))) (-3978 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853)))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-731))) (-3978 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (-3978 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#3| (QUOTE (-234))) (-3978 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#3| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#3| (QUOTE (-1055)))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551)))))) (|HasCategory| (-551) (QUOTE (-855))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-3978 (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#3| (QUOTE (-1055)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasAttribute| |#3| (QUOTE -4440)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#3| (QUOTE (-1107))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))))
(-1120 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
@@ -4420,7 +4420,7 @@ NIL
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1123 R -3508)
+(-1123 R -3514)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
@@ -4434,19 +4434,19 @@ NIL
NIL
(-1126)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4425 . T) (-4429 . T) (-4424 . T) (-4435 . T) (-4436 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4431 . T) (-4435 . T) (-4430 . T) (-4441 . T) (-4442 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-1127 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4437 . T) (-4438 . T))
+((-4443 . T) (-4444 . T))
NIL
(-1128 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-367))) (|HasAttribute| |#3| (QUOTE (-4439 "*"))) (|HasCategory| |#3| (QUOTE (-173))))
+((|HasCategory| |#3| (QUOTE (-367))) (|HasAttribute| |#3| (QUOTE (-4445 "*"))) (|HasCategory| |#3| (QUOTE (-173))))
(-1129 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-4437 . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4443 . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-1130 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
@@ -4454,17 +4454,17 @@ NIL
NIL
(-1131 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-6 -4435)) (-4432 . T) (-4431 . T) (-4434 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3972 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3972 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3972 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4435)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-916))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1132 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4432 . T) (-4431 . T) (-4434 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-367))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-367))))
(-1133 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4438 . T) (-4437 . T))
+((-4444 . T) (-4443 . T))
NIL
-(-1134 UP -3508)
+(-1134 UP -3514)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
@@ -4518,19 +4518,19 @@ NIL
NIL
(-1147 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| (-1146 |#1| |#2|) (LIST (QUOTE -312) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1146 |#1| |#2|) (QUOTE (-1107)))) (|HasCategory| (-1146 |#1| |#2|) (QUOTE (-1107))) (-3972 (-12 (|HasCategory| (-1146 |#1| |#2|) (LIST (QUOTE -312) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1146 |#1| |#2|) (QUOTE (-1107)))) (|HasCategory| (-1146 |#1| |#2|) (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| (-1146 |#1| |#2|) (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| (-1146 |#1| |#2|) (LIST (QUOTE -312) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1146 |#1| |#2|) (QUOTE (-1107)))) (|HasCategory| (-1146 |#1| |#2|) (QUOTE (-1107))) (-3978 (-12 (|HasCategory| (-1146 |#1| |#2|) (LIST (QUOTE -312) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1146 |#1| |#2|) (QUOTE (-1107)))) (|HasCategory| (-1146 |#1| |#2|) (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| (-1146 |#1| |#2|) (LIST (QUOTE -618) (QUOTE (-868)))))
(-1148 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-4434 . T) (-4426 |has| |#2| (-6 (-4439 "*"))) (-4437 . T) (-4431 . T) (-4432 . T))
-((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE (-4439 "*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (QUOTE (-367))) (-3972 (|HasAttribute| |#2| (QUOTE (-4439 "*"))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-173))))
+((-4440 . T) (-4432 |has| |#2| (-6 (-4445 "*"))) (-4443 . T) (-4437 . T) (-4438 . T))
+((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE (-4445 "*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (QUOTE (-367))) (-3978 (|HasAttribute| |#2| (QUOTE (-4445 "*"))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-173))))
(-1149 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
(-1150)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4438 . T) (-4437 . T))
+((-4444 . T) (-4443 . T))
NIL
(-1151 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
@@ -4538,12 +4538,12 @@ NIL
NIL
(-1152 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4438 . T) (-4437 . T))
+((-4444 . T) (-4443 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-868)))))
(-1153 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
(-1154 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
@@ -4554,8 +4554,8 @@ NIL
NIL
(-1156 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4438 . T))
-((-12 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4304) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2263) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (-3972 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (-3972 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-855))) (-3972 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107))))
+((-4444 . T))
+((-12 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-855))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107))))
(-1157)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
@@ -4570,8 +4570,8 @@ NIL
NIL
(-1160 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4438 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4444 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
(-1161 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}.")))
NIL
@@ -4586,16 +4586,16 @@ NIL
NIL
(-1164)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4438 . T) (-4437 . T))
+((-4444 . T) (-4443 . T))
NIL
(-1165)
NIL
-((-4438 . T) (-4437 . T))
-((-3972 (-12 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))))
+((-4444 . T) (-4443 . T))
+((-3978 (-12 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| (-144) (QUOTE (-1107))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))))
(-1166 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 |#1|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4304) (QUOTE (-1165))) (LIST (QUOTE |:|) (QUOTE -2263) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 |#1|)) (QUOTE (-1107)))) (-3972 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 |#1|)) (QUOTE (-1107)))) (-3972 (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 |#1|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 |#1|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 |#1|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 |#1|)) (QUOTE (-1107))) (|HasCategory| (-1165) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 |#1|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 (-1165)) (|:| -2263 |#1|)) (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (QUOTE (-1165))) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (QUOTE (-1107)))) (-3978 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (QUOTE (-1107)))) (-3978 (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (QUOTE (-1107))) (|HasCategory| (-1165) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 (-1165)) (|:| -2264 |#1|)) (LIST (QUOTE -618) (QUOTE (-868)))))
(-1167 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
@@ -4626,9 +4626,9 @@ NIL
NIL
(-1174 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4439 "*") -3972 (-3268 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-825))) (|has| |#1| (-173)) (-3268 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-916)))) (-4430 -3972 (-3268 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-825))) (|has| |#1| (-562)) (-3268 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-916)))) (-4435 |has| |#1| (-367)) (-4429 |has| |#1| (-367)) (-4431 . T) (-4432 . T) (-4434 . T))
-((-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-855)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-1026)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-1157)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|)))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-234)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|))))) (|HasCategory| (-551) (QUOTE (-1118))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-1026)))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-855))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-1157)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4390) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4256) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3497) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-310)))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-173)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-855)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-145)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1175 R -3508)
+(((-4445 "*") -3978 (-3274 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-825))) (|has| |#1| (-173)) (-3274 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-916)))) (-4436 -3978 (-3274 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-825))) (|has| |#1| (-562)) (-3274 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-916)))) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
+((-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-855)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-1026)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-1157)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|)))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-234)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|))))) (|HasCategory| (-551) (QUOTE (-1118))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-1026)))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-855))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-1157)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4262) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-310)))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-173)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-855)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-145)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1175 R -3514)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
@@ -4638,8 +4638,8 @@ NIL
NIL
(-1177 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4433 |has| |#1| (-367)) (-4435 |has| |#1| (-6 -4435)) (-4432 . T) (-4431 . T) (-4434 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1088) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3972 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4435)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4439 |has| |#1| (-367)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1088) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1178 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
@@ -4650,12 +4650,12 @@ NIL
NIL
(-1180 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-367)) (-4429 |has| |#1| (-367)) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-551)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasSignature| |#1| (LIST (QUOTE -4390) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4256) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3497) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-551)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4262) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))))
(-1181 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|)))) (|HasCategory| (-776) (QUOTE (-1118))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasSignature| |#1| (LIST (QUOTE -4390) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasCategory| |#1| (QUOTE (-367))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4256) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3497) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|)))) (|HasCategory| (-776) (QUOTE (-1118))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasCategory| |#1| (QUOTE (-367))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4262) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))))
(-1182)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
@@ -4670,8 +4670,8 @@ NIL
NIL
(-1185 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-6 -4435)) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3972 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| (-977) (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4435)))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-6 -4441)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3978 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| (-977) (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4441)))
(-1186)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
@@ -4710,8 +4710,8 @@ NIL
NIL
(-1195 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4437 . T) (-4438 . T))
-((-12 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4304) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2263) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (-3972 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (-3972 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1107))) (-3972 (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4304 |#1|) (|:| -2263 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4443 . T) (-4444 . T))
+((-12 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4310) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2264) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -619) (QUOTE (-540)))) (-12 (|HasCategory| |#2| (QUOTE (-1107))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1107))) (-3978 (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4310 |#1|) (|:| -2264 |#2|)) (LIST (QUOTE -618) (QUOTE (-868)))))
(-1196 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
@@ -4726,7 +4726,7 @@ NIL
NIL
(-1199 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4438 . T))
+((-4444 . T))
NIL
(-1200 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
@@ -4766,8 +4766,8 @@ NIL
NIL
(-1209 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4438 . T) (-4437 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
+((-4444 . T) (-4443 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1107))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
(-1210 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
@@ -4776,7 +4776,7 @@ NIL
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1212 R -3508)
+(-1212 R -3514)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -4784,21 +4784,21 @@ NIL
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1214 R -3508)
+(-1214 R -3514)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -896) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -892) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -892) (|devaluate| |#1|)))))
(-1215 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4432 . T) (-4431 . T) (-4434 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-367))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-367))))
(-1216 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-372))))
(-1217 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4438 . T) (-4437 . T))
+((-4444 . T) (-4443 . T))
NIL
(-1218 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
@@ -4812,7 +4812,7 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
((|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))))
-(-1221 -3508)
+(-1221 -3514)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
@@ -4838,7 +4838,7 @@ NIL
NIL
(-1227)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-1228)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
@@ -4858,15 +4858,15 @@ NIL
NIL
(-1232 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4439 "*") -3972 (-3268 (|has| |#1| (-367)) (|has| (-1262 |#1| |#2| |#3|) (-825))) (|has| |#1| (-173)) (-3268 (|has| |#1| (-367)) (|has| (-1262 |#1| |#2| |#3|) (-916)))) (-4430 -3972 (-3268 (|has| |#1| (-367)) (|has| (-1262 |#1| |#2| |#3|) (-825))) (|has| |#1| (-562)) (-3268 (|has| |#1| (-367)) (|has| (-1262 |#1| |#2| |#3|) (-916)))) (-4435 |has| |#1| (-367)) (-4429 |has| |#1| (-367)) (-4431 . T) (-4432 . T) (-4434 . T))
-((-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-855)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-1026)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-1157)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|)))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-234)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|))))) (|HasCategory| (-551) (QUOTE (-1118))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-1026)))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-825)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-855))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-1157)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4390) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4256) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3497) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-310)))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-562)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-173)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-855)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-145)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4445 "*") -3978 (-3274 (|has| |#1| (-367)) (|has| (-1262 |#1| |#2| |#3|) (-825))) (|has| |#1| (-173)) (-3274 (|has| |#1| (-367)) (|has| (-1262 |#1| |#2| |#3|) (-916)))) (-4436 -3978 (-3274 (|has| |#1| (-367)) (|has| (-1262 |#1| |#2| |#3|) (-825))) (|has| |#1| (-562)) (-3274 (|has| |#1| (-367)) (|has| (-1262 |#1| |#2| |#3|) (-916)))) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
+((-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-855)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-1026)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-1157)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|)))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-234)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|))))) (|HasCategory| (-551) (QUOTE (-1118))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-1026)))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-825)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-855))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-1157)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4262) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-310)))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-173)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-855)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-145)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1262 |#1| |#2| |#3|) (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1233 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
(-1234 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-367)) (-4429 |has| |#1| (-367)) (-4431 . T) (-4432 . T) (-4434 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-1235 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
@@ -4874,12 +4874,12 @@ NIL
((|HasCategory| |#2| (QUOTE (-367))))
(-1236 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-367)) (-4429 |has| |#1| (-367)) (-4431 . T) (-4432 . T) (-4434 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-1237 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-367)) (-4429 |has| |#1| (-367)) (-4431 . T) (-4432 . T) (-4434 . T))
-((-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1026)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1157)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-3972 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-145))))) (-3972 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-147))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|)))))) (-3972 (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-234))))) (|HasCategory| (-551) (QUOTE (-1118))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1026)))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1026)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1157)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1157)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4390) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4256) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3497) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (|HasCategory| |#2| (QUOTE (-916))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-310)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-145))))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
+((-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1026)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1157)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-145))))) (-3978 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-147))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|)))))) (-3978 (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-551)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-234))))) (|HasCategory| (-551) (QUOTE (-1118))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1026)))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1026)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1157)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1157)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-551))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4262) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (|HasCategory| |#2| (QUOTE (-916))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-310)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-145))))))
(-1238 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
@@ -4894,8 +4894,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-853))))
(-1241 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4439 "*") |has| |#2| (-173)) (-4430 |has| |#2| (-562)) (-4433 |has| |#2| (-367)) (-4435 |has| |#2| (-6 -4435)) (-4432 . T) (-4431 . T) (-4434 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1088) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3972 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-3972 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3972 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3972 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1157))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE -4435)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3972 (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4445 "*") |has| |#2| (-173)) (-4436 |has| |#2| (-562)) (-4439 |has| |#2| (-367)) (-4441 |has| |#2| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-382)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-382))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-551)))) (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-551))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-382)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551))))) (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -896) (QUOTE (-551)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| (-1088) (LIST (QUOTE -619) (QUOTE (-540))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-551)))) (-3978 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (-3978 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3978 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3978 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1157))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (-3978 (-12 (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-1242 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
@@ -4922,7 +4922,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1157))))
(-1248 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4433 |has| |#1| (-367)) (-4435 |has| |#1| (-6 -4435)) (-4432 . T) (-4431 . T) (-4434 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4439 |has| |#1| (-367)) (-4441 |has| |#1| (-6 -4441)) (-4438 . T) (-4437 . T) (-4440 . T))
NIL
(-1249 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
@@ -4931,10 +4931,10 @@ NIL
(-1250 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1118))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4390) (LIST (|devaluate| |#2|) (QUOTE (-1183))))))
+((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1118))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4396) (LIST (|devaluate| |#2|) (QUOTE (-1183))))))
(-1251 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4431 . T) (-4432 . T) (-4434 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-1252 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
@@ -4942,15 +4942,15 @@ NIL
NIL
(-1253 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-367)) (-4429 |has| |#1| (-367)) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-551)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasSignature| |#1| (LIST (QUOTE -4390) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4256) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3497) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-551)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4262) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))))
(-1254 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
(-1255 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-367)) (-4429 |has| |#1| (-367)) (-4431 . T) (-4432 . T) (-4434 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-1256 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
@@ -4958,28 +4958,28 @@ NIL
NIL
(-1257 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-367)) (-4429 |has| |#1| (-367)) (-4431 . T) (-4432 . T) (-4434 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-1258 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4435 |has| |#1| (-367)) (-4429 |has| |#1| (-367)) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-551)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-3972 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasSignature| |#1| (LIST (QUOTE -4390) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4256) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3497) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4441 |has| |#1| (-367)) (-4435 |has| |#1| (-367)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-173))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-551)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-3978 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-551)))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4262) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))))
(-1259 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
-(((-4439 "*") |has| (-1253 |#2| |#3| |#4|) (-173)) (-4430 |has| (-1253 |#2| |#3| |#4|) (-562)) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-173))) (-3972 (|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-367))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-457))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-562))))
+(((-4445 "*") |has| (-1253 |#2| |#3| |#4|) (-173)) (-4436 |has| (-1253 |#2| |#3| |#4|) (-562)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-173))) (-3978 (|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551)))))) (|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -1044) (QUOTE (-551)))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-367))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-457))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-562))))
(-1260 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4438)))
+((|HasAttribute| |#1| (QUOTE -4444)))
(-1261 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
(-1262 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4431 . T) (-4432 . T) (-4434 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (-3972 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|)))) (|HasCategory| (-776) (QUOTE (-1118))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasSignature| |#1| (LIST (QUOTE -4390) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasCategory| |#1| (QUOTE (-367))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4256) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3497) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4437 . T) (-4438 . T) (-4440 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (QUOTE (-562))) (-3978 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|)))) (|HasCategory| (-776) (QUOTE (-1118))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasSignature| |#1| (LIST (QUOTE -4396) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasCategory| |#1| (QUOTE (-367))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-551))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasSignature| |#1| (LIST (QUOTE -4262) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#1|)))))))
(-1263 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
@@ -4987,16 +4987,16 @@ NIL
(-1264 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-966))) (|HasCategory| |#2| (QUOTE (-1208))) (|HasSignature| |#2| (LIST (QUOTE -3497) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4256) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1183))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-367))))
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-551)))) (|HasCategory| |#2| (QUOTE (-966))) (|HasCategory| |#2| (QUOTE (-1208))) (|HasSignature| |#2| (LIST (QUOTE -3503) (LIST (LIST (QUOTE -646) (QUOTE (-1183))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4262) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1183))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasCategory| |#2| (QUOTE (-367))))
(-1265 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4439 "*") |has| |#1| (-173)) (-4430 |has| |#1| (-562)) (-4431 . T) (-4432 . T) (-4434 . T))
+(((-4445 "*") |has| |#1| (-173)) (-4436 |has| |#1| (-562)) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-1266 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1267 -3508 UP L UTS)
+(-1267 -3514 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
((|HasCategory| |#1| (QUOTE (-562))))
@@ -5014,12 +5014,12 @@ NIL
((|HasCategory| |#2| (QUOTE (-1008))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
(-1271 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4438 . T) (-4437 . T))
+((-4444 . T) (-4443 . T))
NIL
(-1272 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4438 . T) (-4437 . T))
-((-3972 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3972 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3972 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1008))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4444 . T) (-4443 . T))
+((-3978 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-3978 (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-540)))) (-3978 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-551) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1008))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1107))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-1273 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
@@ -5050,13 +5050,13 @@ NIL
NIL
(-1280 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4432 . T) (-4431 . T))
+((-4438 . T) (-4437 . T))
NIL
(-1281 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1282 K R UP -3508)
+(-1282 K R UP -3514)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
@@ -5070,56 +5070,56 @@ NIL
NIL
(-1285 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4432 |has| |#1| (-173)) (-4431 |has| |#1| (-173)) (-4434 . T))
+((-4438 |has| |#1| (-173)) (-4437 |has| |#1| (-173)) (-4440 . T))
((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))))
(-1286 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4438 . T) (-4437 . T))
+((-4444 . T) (-4443 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-540)))) (|HasCategory| |#4| (QUOTE (-1107))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-868)))))
(-1287 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")))
-((-4431 . T) (-4432 . T) (-4434 . T))
+((-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-1288 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4434 . T) (-4430 |has| |#2| (-6 -4430)) (-4432 . T) (-4431 . T))
-((|HasCategory| |#2| (QUOTE (-173))) (|HasAttribute| |#2| (QUOTE -4430)))
+((-4440 . T) (-4436 |has| |#2| (-6 -4436)) (-4438 . T) (-4437 . T))
+((|HasCategory| |#2| (QUOTE (-173))) (|HasAttribute| |#2| (QUOTE -4436)))
(-1289 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1290 S -3508)
+(-1290 S -3514)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))))
-(-1291 -3508)
+(-1291 -3514)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4429 . T) (-4435 . T) (-4430 . T) ((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+((-4435 . T) (-4441 . T) (-4436 . T) ((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
(-1292 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4430 |has| |#2| (-6 -4430)) (-4432 . T) (-4431 . T) (-4434 . T))
+((-4436 |has| |#2| (-6 -4436)) (-4438 . T) (-4437 . T) (-4440 . T))
NIL
(-1293 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4430 |has| |#2| (-6 -4430)) (-4432 . T) (-4431 . T) (-4434 . T))
-((|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -722) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasAttribute| |#2| (QUOTE -4430)))
+((-4436 |has| |#2| (-6 -4436)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -722) (LIST (QUOTE -412) (QUOTE (-551))))) (|HasAttribute| |#2| (QUOTE -4436)))
(-1294 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4430 |has| |#1| (-6 -4430)) (-4432 . T) (-4431 . T) (-4434 . T))
-((|HasCategory| |#1| (QUOTE (-173))) (|HasAttribute| |#1| (QUOTE -4430)))
+((-4436 |has| |#1| (-6 -4436)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#1| (QUOTE (-173))) (|HasAttribute| |#1| (QUOTE -4436)))
(-1295 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4430 |has| |#2| (-6 -4430)) (-4432 . T) (-4431 . T) (-4434 . T))
+((-4436 |has| |#2| (-6 -4436)) (-4438 . T) (-4437 . T) (-4440 . T))
NIL
(-1296 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4434 . T) (-4435 |has| |#1| (-6 -4435)) (-4430 |has| |#1| (-6 -4430)) (-4432 . T) (-4431 . T))
-((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4434)) (|HasAttribute| |#1| (QUOTE -4435)) (|HasAttribute| |#1| (QUOTE -4430)))
+((-4440 . T) (-4441 |has| |#1| (-6 -4441)) (-4436 |has| |#1| (-6 -4436)) (-4438 . T) (-4437 . T))
+((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4440)) (|HasAttribute| |#1| (QUOTE -4441)) (|HasAttribute| |#1| (QUOTE -4436)))
(-1297 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4430 |has| |#2| (-6 -4430)) (-4432 . T) (-4431 . T) (-4434 . T))
-((|HasCategory| |#2| (QUOTE (-173))) (|HasAttribute| |#2| (QUOTE -4430)))
+((-4436 |has| |#2| (-6 -4436)) (-4438 . T) (-4437 . T) (-4440 . T))
+((|HasCategory| |#2| (QUOTE (-173))) (|HasAttribute| |#2| (QUOTE -4436)))
(-1298 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
@@ -5134,7 +5134,7 @@ NIL
NIL
(-1301 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4439 "*") . T) (-4431 . T) (-4432 . T) (-4434 . T))
+(((-4445 "*") . T) (-4437 . T) (-4438 . T) (-4440 . T))
NIL
NIL
NIL
@@ -5152,4 +5152,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2265121 2265126 2265131 2265136) (-2 NIL 2265101 2265106 2265111 2265116) (-1 NIL 2265081 2265086 2265091 2265096) (0 NIL 2265061 2265066 2265071 2265076) (-1301 "ZMOD.spad" 2264870 2264883 2264999 2265056) (-1300 "ZLINDEP.spad" 2263936 2263947 2264860 2264865) (-1299 "ZDSOLVE.spad" 2253881 2253903 2263926 2263931) (-1298 "YSTREAM.spad" 2253376 2253387 2253871 2253876) (-1297 "XRPOLY.spad" 2252596 2252616 2253232 2253301) (-1296 "XPR.spad" 2250391 2250404 2252314 2252413) (-1295 "XPOLYC.spad" 2249710 2249726 2250317 2250386) (-1294 "XPOLY.spad" 2249265 2249276 2249566 2249635) (-1293 "XPBWPOLY.spad" 2247702 2247722 2249045 2249114) (-1292 "XFALG.spad" 2244750 2244766 2247628 2247697) (-1291 "XF.spad" 2243213 2243228 2244652 2244745) (-1290 "XF.spad" 2241656 2241673 2243097 2243102) (-1289 "XEXPPKG.spad" 2240907 2240933 2241646 2241651) (-1288 "XDPOLY.spad" 2240521 2240537 2240763 2240832) (-1287 "XALG.spad" 2240181 2240192 2240477 2240516) (-1286 "WUTSET.spad" 2236020 2236037 2239827 2239854) (-1285 "WP.spad" 2235219 2235263 2235878 2235945) (-1284 "WHILEAST.spad" 2235017 2235026 2235209 2235214) (-1283 "WHEREAST.spad" 2234688 2234697 2235007 2235012) (-1282 "WFFINTBS.spad" 2232351 2232373 2234678 2234683) (-1281 "WEIER.spad" 2230573 2230584 2232341 2232346) (-1280 "VSPACE.spad" 2230246 2230257 2230541 2230568) (-1279 "VSPACE.spad" 2229939 2229952 2230236 2230241) (-1278 "VOID.spad" 2229616 2229625 2229929 2229934) (-1277 "VIEWDEF.spad" 2224817 2224826 2229606 2229611) (-1276 "VIEW3D.spad" 2208778 2208787 2224807 2224812) (-1275 "VIEW2D.spad" 2196669 2196678 2208768 2208773) (-1274 "VIEW.spad" 2194349 2194358 2196659 2196664) (-1273 "VECTOR2.spad" 2192988 2193001 2194339 2194344) (-1272 "VECTOR.spad" 2191662 2191673 2191913 2191940) (-1271 "VECTCAT.spad" 2189566 2189577 2191630 2191657) (-1270 "VECTCAT.spad" 2187277 2187290 2189343 2189348) (-1269 "VARIABLE.spad" 2187057 2187072 2187267 2187272) (-1268 "UTYPE.spad" 2186701 2186710 2187047 2187052) (-1267 "UTSODETL.spad" 2185996 2186020 2186657 2186662) (-1266 "UTSODE.spad" 2184212 2184232 2185986 2185991) (-1265 "UTSCAT.spad" 2181691 2181707 2184110 2184207) (-1264 "UTSCAT.spad" 2178814 2178832 2181235 2181240) (-1263 "UTS2.spad" 2178409 2178444 2178804 2178809) (-1262 "UTS.spad" 2173213 2173241 2176876 2176973) (-1261 "URAGG.spad" 2167886 2167897 2173203 2173208) (-1260 "URAGG.spad" 2162523 2162536 2167842 2167847) (-1259 "UPXSSING.spad" 2160168 2160194 2161604 2161737) (-1258 "UPXSCONS.spad" 2157927 2157947 2158300 2158449) (-1257 "UPXSCCA.spad" 2156498 2156518 2157773 2157922) (-1256 "UPXSCCA.spad" 2155211 2155233 2156488 2156493) (-1255 "UPXSCAT.spad" 2153800 2153816 2155057 2155206) (-1254 "UPXS2.spad" 2153343 2153396 2153790 2153795) (-1253 "UPXS.spad" 2150497 2150525 2151475 2151624) (-1252 "UPSQFREE.spad" 2148912 2148926 2150487 2150492) (-1251 "UPSCAT.spad" 2146523 2146547 2148810 2148907) (-1250 "UPSCAT.spad" 2143840 2143866 2146129 2146134) (-1249 "UPOLYC2.spad" 2143311 2143330 2143830 2143835) (-1248 "UPOLYC.spad" 2138351 2138362 2143153 2143306) (-1247 "UPOLYC.spad" 2133283 2133296 2138087 2138092) (-1246 "UPMP.spad" 2132183 2132196 2133273 2133278) (-1245 "UPDIVP.spad" 2131748 2131762 2132173 2132178) (-1244 "UPDECOMP.spad" 2129993 2130007 2131738 2131743) (-1243 "UPCDEN.spad" 2129202 2129218 2129983 2129988) (-1242 "UP2.spad" 2128566 2128587 2129192 2129197) (-1241 "UP.spad" 2125765 2125780 2126152 2126305) (-1240 "UNISEG2.spad" 2125262 2125275 2125721 2125726) (-1239 "UNISEG.spad" 2124615 2124626 2125181 2125186) (-1238 "UNIFACT.spad" 2123718 2123730 2124605 2124610) (-1237 "ULSCONS.spad" 2116114 2116134 2116484 2116633) (-1236 "ULSCCAT.spad" 2113851 2113871 2115960 2116109) (-1235 "ULSCCAT.spad" 2111696 2111718 2113807 2113812) (-1234 "ULSCAT.spad" 2109928 2109944 2111542 2111691) (-1233 "ULS2.spad" 2109442 2109495 2109918 2109923) (-1232 "ULS.spad" 2100000 2100028 2101087 2101516) (-1231 "UINT8.spad" 2099877 2099886 2099990 2099995) (-1230 "UINT64.spad" 2099753 2099762 2099867 2099872) (-1229 "UINT32.spad" 2099629 2099638 2099743 2099748) (-1228 "UINT16.spad" 2099505 2099514 2099619 2099624) (-1227 "UFD.spad" 2098570 2098579 2099431 2099500) (-1226 "UFD.spad" 2097697 2097708 2098560 2098565) (-1225 "UDVO.spad" 2096578 2096587 2097687 2097692) (-1224 "UDPO.spad" 2094071 2094082 2096534 2096539) (-1223 "TYPEAST.spad" 2093990 2093999 2094061 2094066) (-1222 "TYPE.spad" 2093922 2093931 2093980 2093985) (-1221 "TWOFACT.spad" 2092574 2092589 2093912 2093917) (-1220 "TUPLE.spad" 2092060 2092071 2092473 2092478) (-1219 "TUBETOOL.spad" 2088927 2088936 2092050 2092055) (-1218 "TUBE.spad" 2087574 2087591 2088917 2088922) (-1217 "TSETCAT.spad" 2074701 2074718 2087542 2087569) (-1216 "TSETCAT.spad" 2061814 2061833 2074657 2074662) (-1215 "TS.spad" 2060413 2060429 2061379 2061476) (-1214 "TRMANIP.spad" 2054779 2054796 2060119 2060124) (-1213 "TRIMAT.spad" 2053742 2053767 2054769 2054774) (-1212 "TRIGMNIP.spad" 2052269 2052286 2053732 2053737) (-1211 "TRIGCAT.spad" 2051781 2051790 2052259 2052264) (-1210 "TRIGCAT.spad" 2051291 2051302 2051771 2051776) (-1209 "TREE.spad" 2049866 2049877 2050898 2050925) (-1208 "TRANFUN.spad" 2049705 2049714 2049856 2049861) (-1207 "TRANFUN.spad" 2049542 2049553 2049695 2049700) (-1206 "TOPSP.spad" 2049216 2049225 2049532 2049537) (-1205 "TOOLSIGN.spad" 2048879 2048890 2049206 2049211) (-1204 "TEXTFILE.spad" 2047440 2047449 2048869 2048874) (-1203 "TEX1.spad" 2046996 2047007 2047430 2047435) (-1202 "TEX.spad" 2044142 2044151 2046986 2046991) (-1201 "TEMUTL.spad" 2043697 2043706 2044132 2044137) (-1200 "TBCMPPK.spad" 2041790 2041813 2043687 2043692) (-1199 "TBAGG.spad" 2040840 2040863 2041770 2041785) (-1198 "TBAGG.spad" 2039898 2039923 2040830 2040835) (-1197 "TANEXP.spad" 2039306 2039317 2039888 2039893) (-1196 "TABLEAU.spad" 2038787 2038798 2039296 2039301) (-1195 "TABLE.spad" 2037198 2037221 2037468 2037495) (-1194 "TABLBUMP.spad" 2034001 2034012 2037188 2037193) (-1193 "SYSTEM.spad" 2033229 2033238 2033991 2033996) (-1192 "SYSSOLP.spad" 2030712 2030723 2033219 2033224) (-1191 "SYSPTR.spad" 2030611 2030620 2030702 2030707) (-1190 "SYSNNI.spad" 2029793 2029804 2030601 2030606) (-1189 "SYSINT.spad" 2029197 2029208 2029783 2029788) (-1188 "SYNTAX.spad" 2025403 2025412 2029187 2029192) (-1187 "SYMTAB.spad" 2023471 2023480 2025393 2025398) (-1186 "SYMS.spad" 2019500 2019509 2023461 2023466) (-1185 "SYMPOLY.spad" 2018507 2018518 2018589 2018716) (-1184 "SYMFUNC.spad" 2018008 2018019 2018497 2018502) (-1183 "SYMBOL.spad" 2015511 2015520 2017998 2018003) (-1182 "SWITCH.spad" 2012282 2012291 2015501 2015506) (-1181 "SUTS.spad" 2009187 2009215 2010749 2010846) (-1180 "SUPXS.spad" 2006328 2006356 2007319 2007468) (-1179 "SUPFRACF.spad" 2005433 2005451 2006318 2006323) (-1178 "SUP2.spad" 2004825 2004838 2005423 2005428) (-1177 "SUP.spad" 2001638 2001649 2002411 2002564) (-1176 "SUMRF.spad" 2000612 2000623 2001628 2001633) (-1175 "SUMFS.spad" 2000249 2000266 2000602 2000607) (-1174 "SULS.spad" 1990794 1990822 1991894 1992323) (-1173 "SUCHTAST.spad" 1990563 1990572 1990784 1990789) (-1172 "SUCH.spad" 1990245 1990260 1990553 1990558) (-1171 "SUBSPACE.spad" 1982360 1982375 1990235 1990240) (-1170 "SUBRESP.spad" 1981530 1981544 1982316 1982321) (-1169 "STTFNC.spad" 1977998 1978014 1981520 1981525) (-1168 "STTF.spad" 1974097 1974113 1977988 1977993) (-1167 "STTAYLOR.spad" 1966732 1966743 1973978 1973983) (-1166 "STRTBL.spad" 1965237 1965254 1965386 1965413) (-1165 "STRING.spad" 1964646 1964655 1964660 1964687) (-1164 "STRICAT.spad" 1964434 1964443 1964614 1964641) (-1163 "STREAM3.spad" 1964007 1964022 1964424 1964429) (-1162 "STREAM2.spad" 1963135 1963148 1963997 1964002) (-1161 "STREAM1.spad" 1962841 1962852 1963125 1963130) (-1160 "STREAM.spad" 1959759 1959770 1962366 1962381) (-1159 "STINPROD.spad" 1958695 1958711 1959749 1959754) (-1158 "STEPAST.spad" 1957929 1957938 1958685 1958690) (-1157 "STEP.spad" 1957130 1957139 1957919 1957924) (-1156 "STBL.spad" 1955656 1955684 1955823 1955838) (-1155 "STAGG.spad" 1954731 1954742 1955646 1955651) (-1154 "STAGG.spad" 1953804 1953817 1954721 1954726) (-1153 "STACK.spad" 1953161 1953172 1953411 1953438) (-1152 "SREGSET.spad" 1950865 1950882 1952807 1952834) (-1151 "SRDCMPK.spad" 1949426 1949446 1950855 1950860) (-1150 "SRAGG.spad" 1944569 1944578 1949394 1949421) (-1149 "SRAGG.spad" 1939732 1939743 1944559 1944564) (-1148 "SQMATRIX.spad" 1937348 1937366 1938264 1938351) (-1147 "SPLTREE.spad" 1931900 1931913 1936784 1936811) (-1146 "SPLNODE.spad" 1928488 1928501 1931890 1931895) (-1145 "SPFCAT.spad" 1927297 1927306 1928478 1928483) (-1144 "SPECOUT.spad" 1925849 1925858 1927287 1927292) (-1143 "SPADXPT.spad" 1917444 1917453 1925839 1925844) (-1142 "spad-parser.spad" 1916909 1916918 1917434 1917439) (-1141 "SPADAST.spad" 1916610 1916619 1916899 1916904) (-1140 "SPACEC.spad" 1900809 1900820 1916600 1916605) (-1139 "SPACE3.spad" 1900585 1900596 1900799 1900804) (-1138 "SORTPAK.spad" 1900134 1900147 1900541 1900546) (-1137 "SOLVETRA.spad" 1897897 1897908 1900124 1900129) (-1136 "SOLVESER.spad" 1896425 1896436 1897887 1897892) (-1135 "SOLVERAD.spad" 1892451 1892462 1896415 1896420) (-1134 "SOLVEFOR.spad" 1890913 1890931 1892441 1892446) (-1133 "SNTSCAT.spad" 1890513 1890530 1890881 1890908) (-1132 "SMTS.spad" 1888785 1888811 1890078 1890175) (-1131 "SMP.spad" 1886260 1886280 1886650 1886777) (-1130 "SMITH.spad" 1885105 1885130 1886250 1886255) (-1129 "SMATCAT.spad" 1883215 1883245 1885049 1885100) (-1128 "SMATCAT.spad" 1881257 1881289 1883093 1883098) (-1127 "SKAGG.spad" 1880220 1880231 1881225 1881252) (-1126 "SINT.spad" 1879052 1879061 1880086 1880215) (-1125 "SIMPAN.spad" 1878780 1878789 1879042 1879047) (-1124 "SIGNRF.spad" 1877905 1877916 1878770 1878775) (-1123 "SIGNEF.spad" 1877191 1877208 1877895 1877900) (-1122 "SIGAST.spad" 1876576 1876585 1877181 1877186) (-1121 "SIG.spad" 1875906 1875915 1876566 1876571) (-1120 "SHP.spad" 1873834 1873849 1875862 1875867) (-1119 "SHDP.spad" 1863545 1863572 1864054 1864185) (-1118 "SGROUP.spad" 1863153 1863162 1863535 1863540) (-1117 "SGROUP.spad" 1862759 1862770 1863143 1863148) (-1116 "SGCF.spad" 1855922 1855931 1862749 1862754) (-1115 "SFRTCAT.spad" 1854852 1854869 1855890 1855917) (-1114 "SFRGCD.spad" 1853915 1853935 1854842 1854847) (-1113 "SFQCMPK.spad" 1848552 1848572 1853905 1853910) (-1112 "SFORT.spad" 1847991 1848005 1848542 1848547) (-1111 "SEXOF.spad" 1847834 1847874 1847981 1847986) (-1110 "SEXCAT.spad" 1845435 1845475 1847824 1847829) (-1109 "SEX.spad" 1845327 1845336 1845425 1845430) (-1108 "SETMN.spad" 1843779 1843796 1845317 1845322) (-1107 "SETCAT.spad" 1843101 1843110 1843769 1843774) (-1106 "SETCAT.spad" 1842421 1842432 1843091 1843096) (-1105 "SETAGG.spad" 1838970 1838981 1842401 1842416) (-1104 "SETAGG.spad" 1835527 1835540 1838960 1838965) (-1103 "SET.spad" 1833851 1833862 1834948 1834987) (-1102 "SEQAST.spad" 1833554 1833563 1833841 1833846) (-1101 "SEGXCAT.spad" 1832710 1832723 1833544 1833549) (-1100 "SEGCAT.spad" 1831635 1831646 1832700 1832705) (-1099 "SEGBIND2.spad" 1831333 1831346 1831625 1831630) (-1098 "SEGBIND.spad" 1831091 1831102 1831280 1831285) (-1097 "SEGAST.spad" 1830805 1830814 1831081 1831086) (-1096 "SEG2.spad" 1830240 1830253 1830761 1830766) (-1095 "SEG.spad" 1830053 1830064 1830159 1830164) (-1094 "SDVAR.spad" 1829329 1829340 1830043 1830048) (-1093 "SDPOL.spad" 1826755 1826766 1827046 1827173) (-1092 "SCPKG.spad" 1824844 1824855 1826745 1826750) (-1091 "SCOPE.spad" 1823997 1824006 1824834 1824839) (-1090 "SCACHE.spad" 1822693 1822704 1823987 1823992) (-1089 "SASTCAT.spad" 1822602 1822611 1822683 1822688) (-1088 "SAOS.spad" 1822474 1822483 1822592 1822597) (-1087 "SAERFFC.spad" 1822187 1822207 1822464 1822469) (-1086 "SAEFACT.spad" 1821888 1821908 1822177 1822182) (-1085 "SAE.spad" 1820063 1820079 1820674 1820809) (-1084 "RURPK.spad" 1817722 1817738 1820053 1820058) (-1083 "RULESET.spad" 1817175 1817199 1817712 1817717) (-1082 "RULECOLD.spad" 1817027 1817040 1817165 1817170) (-1081 "RULE.spad" 1815267 1815291 1817017 1817022) (-1080 "RTVALUE.spad" 1815002 1815011 1815257 1815262) (-1079 "RSTRCAST.spad" 1814719 1814728 1814992 1814997) (-1078 "RSETGCD.spad" 1811097 1811117 1814709 1814714) (-1077 "RSETCAT.spad" 1801033 1801050 1811065 1811092) (-1076 "RSETCAT.spad" 1790989 1791008 1801023 1801028) (-1075 "RSDCMPK.spad" 1789441 1789461 1790979 1790984) (-1074 "RRCC.spad" 1787825 1787855 1789431 1789436) (-1073 "RRCC.spad" 1786207 1786239 1787815 1787820) (-1072 "RPTAST.spad" 1785909 1785918 1786197 1786202) (-1071 "RPOLCAT.spad" 1765269 1765284 1785777 1785904) (-1070 "RPOLCAT.spad" 1744343 1744360 1764853 1764858) (-1069 "ROUTINE.spad" 1740226 1740235 1742990 1743017) (-1068 "ROMAN.spad" 1739554 1739563 1740092 1740221) (-1067 "ROIRC.spad" 1738634 1738666 1739544 1739549) (-1066 "RNS.spad" 1737537 1737546 1738536 1738629) (-1065 "RNS.spad" 1736526 1736537 1737527 1737532) (-1064 "RNGBIND.spad" 1735686 1735700 1736481 1736486) (-1063 "RNG.spad" 1735421 1735430 1735676 1735681) (-1062 "RMODULE.spad" 1735186 1735197 1735411 1735416) (-1061 "RMCAT2.spad" 1734606 1734663 1735176 1735181) (-1060 "RMATRIX.spad" 1733430 1733449 1733773 1733812) (-1059 "RMATCAT.spad" 1729009 1729040 1733386 1733425) (-1058 "RMATCAT.spad" 1724478 1724511 1728857 1728862) (-1057 "RLINSET.spad" 1723872 1723883 1724468 1724473) (-1056 "RINTERP.spad" 1723760 1723780 1723862 1723867) (-1055 "RING.spad" 1723230 1723239 1723740 1723755) (-1054 "RING.spad" 1722708 1722719 1723220 1723225) (-1053 "RIDIST.spad" 1722100 1722109 1722698 1722703) (-1052 "RGCHAIN.spad" 1720683 1720699 1721585 1721612) (-1051 "RGBCSPC.spad" 1720464 1720476 1720673 1720678) (-1050 "RGBCMDL.spad" 1719994 1720006 1720454 1720459) (-1049 "RFFACTOR.spad" 1719456 1719467 1719984 1719989) (-1048 "RFFACT.spad" 1719191 1719203 1719446 1719451) (-1047 "RFDIST.spad" 1718187 1718196 1719181 1719186) (-1046 "RF.spad" 1715829 1715840 1718177 1718182) (-1045 "RETSOL.spad" 1715248 1715261 1715819 1715824) (-1044 "RETRACT.spad" 1714676 1714687 1715238 1715243) (-1043 "RETRACT.spad" 1714102 1714115 1714666 1714671) (-1042 "RETAST.spad" 1713914 1713923 1714092 1714097) (-1041 "RESULT.spad" 1711974 1711983 1712561 1712588) (-1040 "RESRING.spad" 1711321 1711368 1711912 1711969) (-1039 "RESLATC.spad" 1710645 1710656 1711311 1711316) (-1038 "REPSQ.spad" 1710376 1710387 1710635 1710640) (-1037 "REPDB.spad" 1710083 1710094 1710366 1710371) (-1036 "REP2.spad" 1699741 1699752 1709925 1709930) (-1035 "REP1.spad" 1693937 1693948 1699691 1699696) (-1034 "REP.spad" 1691491 1691500 1693927 1693932) (-1033 "REGSET.spad" 1689288 1689305 1691137 1691164) (-1032 "REF.spad" 1688623 1688634 1689243 1689248) (-1031 "REDORDER.spad" 1687829 1687846 1688613 1688618) (-1030 "RECLOS.spad" 1686612 1686632 1687316 1687409) (-1029 "REALSOLV.spad" 1685752 1685761 1686602 1686607) (-1028 "REAL0Q.spad" 1683050 1683065 1685742 1685747) (-1027 "REAL0.spad" 1679894 1679909 1683040 1683045) (-1026 "REAL.spad" 1679766 1679775 1679884 1679889) (-1025 "RDUCEAST.spad" 1679487 1679496 1679756 1679761) (-1024 "RDIV.spad" 1679142 1679167 1679477 1679482) (-1023 "RDIST.spad" 1678709 1678720 1679132 1679137) (-1022 "RDETRS.spad" 1677573 1677591 1678699 1678704) (-1021 "RDETR.spad" 1675712 1675730 1677563 1677568) (-1020 "RDEEFS.spad" 1674811 1674828 1675702 1675707) (-1019 "RDEEF.spad" 1673821 1673838 1674801 1674806) (-1018 "RCFIELD.spad" 1671007 1671016 1673723 1673816) (-1017 "RCFIELD.spad" 1668279 1668290 1670997 1671002) (-1016 "RCAGG.spad" 1666207 1666218 1668269 1668274) (-1015 "RCAGG.spad" 1664062 1664075 1666126 1666131) (-1014 "RATRET.spad" 1663422 1663433 1664052 1664057) (-1013 "RATFACT.spad" 1663114 1663126 1663412 1663417) (-1012 "RANDSRC.spad" 1662433 1662442 1663104 1663109) (-1011 "RADUTIL.spad" 1662189 1662198 1662423 1662428) (-1010 "RADIX.spad" 1659110 1659124 1660656 1660749) (-1009 "RADFF.spad" 1657523 1657560 1657642 1657798) (-1008 "RADCAT.spad" 1657118 1657127 1657513 1657518) (-1007 "RADCAT.spad" 1656711 1656722 1657108 1657113) (-1006 "QUEUE.spad" 1656059 1656070 1656318 1656345) (-1005 "QUATCT2.spad" 1655679 1655698 1656049 1656054) (-1004 "QUATCAT.spad" 1653849 1653860 1655609 1655674) (-1003 "QUATCAT.spad" 1651770 1651783 1653532 1653537) (-1002 "QUAT.spad" 1650351 1650362 1650694 1650759) (-1001 "QUAGG.spad" 1649178 1649189 1650319 1650346) (-1000 "QQUTAST.spad" 1648946 1648955 1649168 1649173) (-999 "QFORM.spad" 1648411 1648425 1648936 1648941) (-998 "QFCAT2.spad" 1648104 1648120 1648401 1648406) (-997 "QFCAT.spad" 1646807 1646817 1648006 1648099) (-996 "QFCAT.spad" 1645101 1645113 1646302 1646307) (-995 "QEQUAT.spad" 1644660 1644668 1645091 1645096) (-994 "QCMPACK.spad" 1639407 1639426 1644650 1644655) (-993 "QALGSET2.spad" 1637403 1637421 1639397 1639402) (-992 "QALGSET.spad" 1633484 1633516 1637317 1637322) (-991 "PWFFINTB.spad" 1630900 1630921 1633474 1633479) (-990 "PUSHVAR.spad" 1630239 1630258 1630890 1630895) (-989 "PTRANFN.spad" 1626367 1626377 1630229 1630234) (-988 "PTPACK.spad" 1623455 1623465 1626357 1626362) (-987 "PTFUNC2.spad" 1623278 1623292 1623445 1623450) (-986 "PTCAT.spad" 1622533 1622543 1623246 1623273) (-985 "PSQFR.spad" 1621840 1621864 1622523 1622528) (-984 "PSEUDLIN.spad" 1620726 1620736 1621830 1621835) (-983 "PSETPK.spad" 1606159 1606175 1620604 1620609) (-982 "PSETCAT.spad" 1600079 1600102 1606139 1606154) (-981 "PSETCAT.spad" 1593973 1593998 1600035 1600040) (-980 "PSCURVE.spad" 1592956 1592964 1593963 1593968) (-979 "PSCAT.spad" 1591739 1591768 1592854 1592951) (-978 "PSCAT.spad" 1590612 1590643 1591729 1591734) (-977 "PRTITION.spad" 1589573 1589581 1590602 1590607) (-976 "PRTDAST.spad" 1589292 1589300 1589563 1589568) (-975 "PRS.spad" 1578854 1578871 1589248 1589253) (-974 "PRQAGG.spad" 1578289 1578299 1578822 1578849) (-973 "PROPLOG.spad" 1577588 1577596 1578279 1578284) (-972 "PROPFRML.spad" 1576156 1576167 1577578 1577583) (-971 "PROPERTY.spad" 1575644 1575652 1576146 1576151) (-970 "PRODUCT.spad" 1573326 1573338 1573610 1573665) (-969 "PRINT.spad" 1573078 1573086 1573316 1573321) (-968 "PRIMES.spad" 1571331 1571341 1573068 1573073) (-967 "PRIMELT.spad" 1569412 1569426 1571321 1571326) (-966 "PRIMCAT.spad" 1569039 1569047 1569402 1569407) (-965 "PRIMARR2.spad" 1567806 1567818 1569029 1569034) (-964 "PRIMARR.spad" 1566811 1566821 1566989 1567016) (-963 "PREASSOC.spad" 1566193 1566205 1566801 1566806) (-962 "PR.spad" 1564585 1564597 1565284 1565411) (-961 "PPCURVE.spad" 1563722 1563730 1564575 1564580) (-960 "PORTNUM.spad" 1563497 1563505 1563712 1563717) (-959 "POLYROOT.spad" 1562346 1562368 1563453 1563458) (-958 "POLYLIFT.spad" 1561611 1561634 1562336 1562341) (-957 "POLYCATQ.spad" 1559729 1559751 1561601 1561606) (-956 "POLYCAT.spad" 1553199 1553220 1559597 1559724) (-955 "POLYCAT.spad" 1546007 1546030 1552407 1552412) (-954 "POLY2UP.spad" 1545459 1545473 1545997 1546002) (-953 "POLY2.spad" 1545056 1545068 1545449 1545454) (-952 "POLY.spad" 1542391 1542401 1542906 1543033) (-951 "POLUTIL.spad" 1541332 1541361 1542347 1542352) (-950 "POLTOPOL.spad" 1540080 1540095 1541322 1541327) (-949 "POINT.spad" 1538918 1538928 1539005 1539032) (-948 "PNTHEORY.spad" 1535620 1535628 1538908 1538913) (-947 "PMTOOLS.spad" 1534395 1534409 1535610 1535615) (-946 "PMSYM.spad" 1533944 1533954 1534385 1534390) (-945 "PMQFCAT.spad" 1533535 1533549 1533934 1533939) (-944 "PMPREDFS.spad" 1532989 1533011 1533525 1533530) (-943 "PMPRED.spad" 1532468 1532482 1532979 1532984) (-942 "PMPLCAT.spad" 1531548 1531566 1532400 1532405) (-941 "PMLSAGG.spad" 1531133 1531147 1531538 1531543) (-940 "PMKERNEL.spad" 1530712 1530724 1531123 1531128) (-939 "PMINS.spad" 1530292 1530302 1530702 1530707) (-938 "PMFS.spad" 1529869 1529887 1530282 1530287) (-937 "PMDOWN.spad" 1529159 1529173 1529859 1529864) (-936 "PMASSFS.spad" 1528126 1528142 1529149 1529154) (-935 "PMASS.spad" 1527136 1527144 1528116 1528121) (-934 "PLOTTOOL.spad" 1526916 1526924 1527126 1527131) (-933 "PLOT3D.spad" 1523380 1523388 1526906 1526911) (-932 "PLOT1.spad" 1522537 1522547 1523370 1523375) (-931 "PLOT.spad" 1517460 1517468 1522527 1522532) (-930 "PLEQN.spad" 1504750 1504777 1517450 1517455) (-929 "PINTERPA.spad" 1504534 1504550 1504740 1504745) (-928 "PINTERP.spad" 1504156 1504175 1504524 1504529) (-927 "PID.spad" 1503126 1503134 1504082 1504151) (-926 "PICOERCE.spad" 1502783 1502793 1503116 1503121) (-925 "PI.spad" 1502392 1502400 1502757 1502778) (-924 "PGROEB.spad" 1500993 1501007 1502382 1502387) (-923 "PGE.spad" 1492610 1492618 1500983 1500988) (-922 "PGCD.spad" 1491500 1491517 1492600 1492605) (-921 "PFRPAC.spad" 1490649 1490659 1491490 1491495) (-920 "PFR.spad" 1487312 1487322 1490551 1490644) (-919 "PFOTOOLS.spad" 1486570 1486586 1487302 1487307) (-918 "PFOQ.spad" 1485940 1485958 1486560 1486565) (-917 "PFO.spad" 1485359 1485386 1485930 1485935) (-916 "PFECAT.spad" 1483041 1483049 1485285 1485354) (-915 "PFECAT.spad" 1480751 1480761 1482997 1483002) (-914 "PFBRU.spad" 1478639 1478651 1480741 1480746) (-913 "PFBR.spad" 1476199 1476222 1478629 1478634) (-912 "PF.spad" 1475773 1475785 1476004 1476097) (-911 "PERMGRP.spad" 1470535 1470545 1475763 1475768) (-910 "PERMCAT.spad" 1469093 1469103 1470515 1470530) (-909 "PERMAN.spad" 1467625 1467639 1469083 1469088) (-908 "PERM.spad" 1463310 1463320 1467455 1467470) (-907 "PENDTREE.spad" 1462651 1462661 1462939 1462944) (-906 "PDRING.spad" 1461202 1461212 1462631 1462646) (-905 "PDRING.spad" 1459761 1459773 1461192 1461197) (-904 "PDEPROB.spad" 1458776 1458784 1459751 1459756) (-903 "PDEPACK.spad" 1452816 1452824 1458766 1458771) (-902 "PDECOMP.spad" 1452286 1452303 1452806 1452811) (-901 "PDECAT.spad" 1450642 1450650 1452276 1452281) (-900 "PCOMP.spad" 1450495 1450508 1450632 1450637) (-899 "PBWLB.spad" 1449083 1449100 1450485 1450490) (-898 "PATTERN2.spad" 1448821 1448833 1449073 1449078) (-897 "PATTERN1.spad" 1447157 1447173 1448811 1448816) (-896 "PATTERN.spad" 1441696 1441706 1447147 1447152) (-895 "PATRES2.spad" 1441368 1441382 1441686 1441691) (-894 "PATRES.spad" 1438943 1438955 1441358 1441363) (-893 "PATMATCH.spad" 1437140 1437171 1438651 1438656) (-892 "PATMAB.spad" 1436569 1436579 1437130 1437135) (-891 "PATLRES.spad" 1435655 1435669 1436559 1436564) (-890 "PATAB.spad" 1435419 1435429 1435645 1435650) (-889 "PARTPERM.spad" 1432819 1432827 1435409 1435414) (-888 "PARSURF.spad" 1432253 1432281 1432809 1432814) (-887 "PARSU2.spad" 1432050 1432066 1432243 1432248) (-886 "script-parser.spad" 1431570 1431578 1432040 1432045) (-885 "PARSCURV.spad" 1431004 1431032 1431560 1431565) (-884 "PARSC2.spad" 1430795 1430811 1430994 1430999) (-883 "PARPCURV.spad" 1430257 1430285 1430785 1430790) (-882 "PARPC2.spad" 1430048 1430064 1430247 1430252) (-881 "PARAMAST.spad" 1429176 1429184 1430038 1430043) (-880 "PAN2EXPR.spad" 1428588 1428596 1429166 1429171) (-879 "PALETTE.spad" 1427558 1427566 1428578 1428583) (-878 "PAIR.spad" 1426545 1426558 1427146 1427151) (-877 "PADICRC.spad" 1423879 1423897 1425050 1425143) (-876 "PADICRAT.spad" 1421894 1421906 1422115 1422208) (-875 "PADICCT.spad" 1420443 1420455 1421820 1421889) (-874 "PADIC.spad" 1420138 1420150 1420369 1420438) (-873 "PADEPAC.spad" 1418827 1418846 1420128 1420133) (-872 "PADE.spad" 1417579 1417595 1418817 1418822) (-871 "OWP.spad" 1416819 1416849 1417437 1417504) (-870 "OVERSET.spad" 1416392 1416400 1416809 1416814) (-869 "OVAR.spad" 1416173 1416196 1416382 1416387) (-868 "OUTFORM.spad" 1405565 1405573 1416163 1416168) (-867 "OUTBFILE.spad" 1404983 1404991 1405555 1405560) (-866 "OUTBCON.spad" 1403989 1403997 1404973 1404978) (-865 "OUTBCON.spad" 1402993 1403003 1403979 1403984) (-864 "OUT.spad" 1402079 1402087 1402983 1402988) (-863 "OSI.spad" 1401554 1401562 1402069 1402074) (-862 "OSGROUP.spad" 1401472 1401480 1401544 1401549) (-861 "ORTHPOL.spad" 1399957 1399967 1401389 1401394) (-860 "OREUP.spad" 1399410 1399438 1399637 1399676) (-859 "ORESUP.spad" 1398711 1398735 1399090 1399129) (-858 "OREPCTO.spad" 1396568 1396580 1398631 1398636) (-857 "OREPCAT.spad" 1390715 1390725 1396524 1396563) (-856 "OREPCAT.spad" 1384752 1384764 1390563 1390568) (-855 "ORDSET.spad" 1383924 1383932 1384742 1384747) (-854 "ORDSET.spad" 1383094 1383104 1383914 1383919) (-853 "ORDRING.spad" 1382484 1382492 1383074 1383089) (-852 "ORDRING.spad" 1381882 1381892 1382474 1382479) (-851 "ORDMON.spad" 1381737 1381745 1381872 1381877) (-850 "ORDFUNS.spad" 1380869 1380885 1381727 1381732) (-849 "ORDFIN.spad" 1380689 1380697 1380859 1380864) (-848 "ORDCOMP2.spad" 1379982 1379994 1380679 1380684) (-847 "ORDCOMP.spad" 1378447 1378457 1379529 1379558) (-846 "OPTPROB.spad" 1377085 1377093 1378437 1378442) (-845 "OPTPACK.spad" 1369494 1369502 1377075 1377080) (-844 "OPTCAT.spad" 1367173 1367181 1369484 1369489) (-843 "OPSIG.spad" 1366827 1366835 1367163 1367168) (-842 "OPQUERY.spad" 1366376 1366384 1366817 1366822) (-841 "OPERCAT.spad" 1365842 1365852 1366366 1366371) (-840 "OPERCAT.spad" 1365306 1365318 1365832 1365837) (-839 "OP.spad" 1365048 1365058 1365128 1365195) (-838 "ONECOMP2.spad" 1364472 1364484 1365038 1365043) (-837 "ONECOMP.spad" 1363217 1363227 1364019 1364048) (-836 "OMSERVER.spad" 1362223 1362231 1363207 1363212) (-835 "OMSAGG.spad" 1362011 1362021 1362179 1362218) (-834 "OMPKG.spad" 1360627 1360635 1362001 1362006) (-833 "OMLO.spad" 1360052 1360064 1360513 1360552) (-832 "OMEXPR.spad" 1359886 1359896 1360042 1360047) (-831 "OMERRK.spad" 1358920 1358928 1359876 1359881) (-830 "OMERR.spad" 1358465 1358473 1358910 1358915) (-829 "OMENC.spad" 1357809 1357817 1358455 1358460) (-828 "OMDEV.spad" 1352118 1352126 1357799 1357804) (-827 "OMCONN.spad" 1351527 1351535 1352108 1352113) (-826 "OM.spad" 1350500 1350508 1351517 1351522) (-825 "OINTDOM.spad" 1350263 1350271 1350426 1350495) (-824 "OFMONOID.spad" 1348386 1348396 1350219 1350224) (-823 "ODVAR.spad" 1347647 1347657 1348376 1348381) (-822 "ODR.spad" 1347291 1347317 1347459 1347608) (-821 "ODPOL.spad" 1344673 1344683 1345013 1345140) (-820 "ODP.spad" 1334520 1334540 1334893 1335024) (-819 "ODETOOLS.spad" 1333169 1333188 1334510 1334515) (-818 "ODESYS.spad" 1330863 1330880 1333159 1333164) (-817 "ODERTRIC.spad" 1326872 1326889 1330820 1330825) (-816 "ODERED.spad" 1326271 1326295 1326862 1326867) (-815 "ODERAT.spad" 1323888 1323905 1326261 1326266) (-814 "ODEPRRIC.spad" 1320925 1320947 1323878 1323883) (-813 "ODEPROB.spad" 1320182 1320190 1320915 1320920) (-812 "ODEPRIM.spad" 1317516 1317538 1320172 1320177) (-811 "ODEPAL.spad" 1316902 1316926 1317506 1317511) (-810 "ODEPACK.spad" 1303568 1303576 1316892 1316897) (-809 "ODEINT.spad" 1303003 1303019 1303558 1303563) (-808 "ODEIFTBL.spad" 1300398 1300406 1302993 1302998) (-807 "ODEEF.spad" 1295893 1295909 1300388 1300393) (-806 "ODECONST.spad" 1295430 1295448 1295883 1295888) (-805 "ODECAT.spad" 1294028 1294036 1295420 1295425) (-804 "OCTCT2.spad" 1293674 1293695 1294018 1294023) (-803 "OCT.spad" 1291810 1291820 1292524 1292563) (-802 "OCAMON.spad" 1291658 1291666 1291800 1291805) (-801 "OC.spad" 1289454 1289464 1291614 1291653) (-800 "OC.spad" 1286975 1286987 1289137 1289142) (-799 "OASGP.spad" 1286790 1286798 1286965 1286970) (-798 "OAMONS.spad" 1286312 1286320 1286780 1286785) (-797 "OAMON.spad" 1286173 1286181 1286302 1286307) (-796 "OAGROUP.spad" 1286035 1286043 1286163 1286168) (-795 "NUMTUBE.spad" 1285626 1285642 1286025 1286030) (-794 "NUMQUAD.spad" 1273602 1273610 1285616 1285621) (-793 "NUMODE.spad" 1264956 1264964 1273592 1273597) (-792 "NUMINT.spad" 1262522 1262530 1264946 1264951) (-791 "NUMFMT.spad" 1261362 1261370 1262512 1262517) (-790 "NUMERIC.spad" 1253476 1253486 1261167 1261172) (-789 "NTSCAT.spad" 1251984 1252000 1253444 1253471) (-788 "NTPOLFN.spad" 1251535 1251545 1251901 1251906) (-787 "NSUP2.spad" 1250927 1250939 1251525 1251530) (-786 "NSUP.spad" 1243973 1243983 1248513 1248666) (-785 "NSMP.spad" 1240204 1240223 1240512 1240639) (-784 "NREP.spad" 1238582 1238596 1240194 1240199) (-783 "NPCOEF.spad" 1237828 1237848 1238572 1238577) (-782 "NORMRETR.spad" 1237426 1237465 1237818 1237823) (-781 "NORMPK.spad" 1235328 1235347 1237416 1237421) (-780 "NORMMA.spad" 1235016 1235042 1235318 1235323) (-779 "NONE1.spad" 1234692 1234702 1235006 1235011) (-778 "NONE.spad" 1234433 1234441 1234682 1234687) (-777 "NODE1.spad" 1233920 1233936 1234423 1234428) (-776 "NNI.spad" 1232815 1232823 1233894 1233915) (-775 "NLINSOL.spad" 1231441 1231451 1232805 1232810) (-774 "NIPROB.spad" 1229982 1229990 1231431 1231436) (-773 "NFINTBAS.spad" 1227542 1227559 1229972 1229977) (-772 "NETCLT.spad" 1227516 1227527 1227532 1227537) (-771 "NCODIV.spad" 1225732 1225748 1227506 1227511) (-770 "NCNTFRAC.spad" 1225374 1225388 1225722 1225727) (-769 "NCEP.spad" 1223540 1223554 1225364 1225369) (-768 "NASRING.spad" 1223136 1223144 1223530 1223535) (-767 "NASRING.spad" 1222730 1222740 1223126 1223131) (-766 "NARNG.spad" 1222082 1222090 1222720 1222725) (-765 "NARNG.spad" 1221432 1221442 1222072 1222077) (-764 "NAGSP.spad" 1220509 1220517 1221422 1221427) (-763 "NAGS.spad" 1210170 1210178 1220499 1220504) (-762 "NAGF07.spad" 1208601 1208609 1210160 1210165) (-761 "NAGF04.spad" 1203003 1203011 1208591 1208596) (-760 "NAGF02.spad" 1197072 1197080 1202993 1202998) (-759 "NAGF01.spad" 1192833 1192841 1197062 1197067) (-758 "NAGE04.spad" 1186533 1186541 1192823 1192828) (-757 "NAGE02.spad" 1177193 1177201 1186523 1186528) (-756 "NAGE01.spad" 1173195 1173203 1177183 1177188) (-755 "NAGD03.spad" 1171199 1171207 1173185 1173190) (-754 "NAGD02.spad" 1163946 1163954 1171189 1171194) (-753 "NAGD01.spad" 1158239 1158247 1163936 1163941) (-752 "NAGC06.spad" 1154114 1154122 1158229 1158234) (-751 "NAGC05.spad" 1152615 1152623 1154104 1154109) (-750 "NAGC02.spad" 1151882 1151890 1152605 1152610) (-749 "NAALG.spad" 1151423 1151433 1151850 1151877) (-748 "NAALG.spad" 1150984 1150996 1151413 1151418) (-747 "MULTSQFR.spad" 1147942 1147959 1150974 1150979) (-746 "MULTFACT.spad" 1147325 1147342 1147932 1147937) (-745 "MTSCAT.spad" 1145419 1145440 1147223 1147320) (-744 "MTHING.spad" 1145078 1145088 1145409 1145414) (-743 "MSYSCMD.spad" 1144512 1144520 1145068 1145073) (-742 "MSETAGG.spad" 1144357 1144367 1144480 1144507) (-741 "MSET.spad" 1142315 1142325 1144063 1144102) (-740 "MRING.spad" 1139292 1139304 1142023 1142090) (-739 "MRF2.spad" 1138862 1138876 1139282 1139287) (-738 "MRATFAC.spad" 1138408 1138425 1138852 1138857) (-737 "MPRFF.spad" 1136448 1136467 1138398 1138403) (-736 "MPOLY.spad" 1133919 1133934 1134278 1134405) (-735 "MPCPF.spad" 1133183 1133202 1133909 1133914) (-734 "MPC3.spad" 1133000 1133040 1133173 1133178) (-733 "MPC2.spad" 1132646 1132679 1132990 1132995) (-732 "MONOTOOL.spad" 1130997 1131014 1132636 1132641) (-731 "MONOID.spad" 1130316 1130324 1130987 1130992) (-730 "MONOID.spad" 1129633 1129643 1130306 1130311) (-729 "MONOGEN.spad" 1128381 1128394 1129493 1129628) (-728 "MONOGEN.spad" 1127151 1127166 1128265 1128270) (-727 "MONADWU.spad" 1125181 1125189 1127141 1127146) (-726 "MONADWU.spad" 1123209 1123219 1125171 1125176) (-725 "MONAD.spad" 1122369 1122377 1123199 1123204) (-724 "MONAD.spad" 1121527 1121537 1122359 1122364) (-723 "MOEBIUS.spad" 1120263 1120277 1121507 1121522) (-722 "MODULE.spad" 1120133 1120143 1120231 1120258) (-721 "MODULE.spad" 1120023 1120035 1120123 1120128) (-720 "MODRING.spad" 1119358 1119397 1120003 1120018) (-719 "MODOP.spad" 1118023 1118035 1119180 1119247) (-718 "MODMONOM.spad" 1117754 1117772 1118013 1118018) (-717 "MODMON.spad" 1114549 1114565 1115268 1115421) (-716 "MODFIELD.spad" 1113911 1113950 1114451 1114544) (-715 "MMLFORM.spad" 1112771 1112779 1113901 1113906) (-714 "MMAP.spad" 1112513 1112547 1112761 1112766) (-713 "MLO.spad" 1110972 1110982 1112469 1112508) (-712 "MLIFT.spad" 1109584 1109601 1110962 1110967) (-711 "MKUCFUNC.spad" 1109119 1109137 1109574 1109579) (-710 "MKRECORD.spad" 1108723 1108736 1109109 1109114) (-709 "MKFUNC.spad" 1108130 1108140 1108713 1108718) (-708 "MKFLCFN.spad" 1107098 1107108 1108120 1108125) (-707 "MKBCFUNC.spad" 1106593 1106611 1107088 1107093) (-706 "MINT.spad" 1106032 1106040 1106495 1106588) (-705 "MHROWRED.spad" 1104543 1104553 1106022 1106027) (-704 "MFLOAT.spad" 1103063 1103071 1104433 1104538) (-703 "MFINFACT.spad" 1102463 1102485 1103053 1103058) (-702 "MESH.spad" 1100250 1100258 1102453 1102458) (-701 "MDDFACT.spad" 1098461 1098471 1100240 1100245) (-700 "MDAGG.spad" 1097752 1097762 1098441 1098456) (-699 "MCMPLX.spad" 1093763 1093771 1094377 1094578) (-698 "MCDEN.spad" 1092973 1092985 1093753 1093758) (-697 "MCALCFN.spad" 1090095 1090121 1092963 1092968) (-696 "MAYBE.spad" 1089379 1089390 1090085 1090090) (-695 "MATSTOR.spad" 1086687 1086697 1089369 1089374) (-694 "MATRIX.spad" 1085391 1085401 1085875 1085902) (-693 "MATLIN.spad" 1082735 1082759 1085275 1085280) (-692 "MATCAT2.spad" 1082017 1082065 1082725 1082730) (-691 "MATCAT.spad" 1073746 1073768 1081985 1082012) (-690 "MATCAT.spad" 1065347 1065371 1073588 1073593) (-689 "MAPPKG3.spad" 1064262 1064276 1065337 1065342) (-688 "MAPPKG2.spad" 1063600 1063612 1064252 1064257) (-687 "MAPPKG1.spad" 1062428 1062438 1063590 1063595) (-686 "MAPPAST.spad" 1061743 1061751 1062418 1062423) (-685 "MAPHACK3.spad" 1061555 1061569 1061733 1061738) (-684 "MAPHACK2.spad" 1061324 1061336 1061545 1061550) (-683 "MAPHACK1.spad" 1060968 1060978 1061314 1061319) (-682 "MAGMA.spad" 1058758 1058775 1060958 1060963) (-681 "MACROAST.spad" 1058337 1058345 1058748 1058753) (-680 "M3D.spad" 1056057 1056067 1057715 1057720) (-679 "LZSTAGG.spad" 1053295 1053305 1056047 1056052) (-678 "LZSTAGG.spad" 1050531 1050543 1053285 1053290) (-677 "LWORD.spad" 1047236 1047253 1050521 1050526) (-676 "LSTAST.spad" 1047020 1047028 1047226 1047231) (-675 "LSQM.spad" 1045247 1045261 1045641 1045692) (-674 "LSPP.spad" 1044782 1044799 1045237 1045242) (-673 "LSMP1.spad" 1042617 1042631 1044772 1044777) (-672 "LSMP.spad" 1041474 1041502 1042607 1042612) (-671 "LSAGG.spad" 1041143 1041153 1041442 1041469) (-670 "LSAGG.spad" 1040832 1040844 1041133 1041138) (-669 "LPOLY.spad" 1039786 1039805 1040688 1040757) (-668 "LPEFRAC.spad" 1039057 1039067 1039776 1039781) (-667 "LOGIC.spad" 1038659 1038667 1039047 1039052) (-666 "LOGIC.spad" 1038259 1038269 1038649 1038654) (-665 "LODOOPS.spad" 1037189 1037201 1038249 1038254) (-664 "LODOF.spad" 1036235 1036252 1037146 1037151) (-663 "LODOCAT.spad" 1034901 1034911 1036191 1036230) (-662 "LODOCAT.spad" 1033565 1033577 1034857 1034862) (-661 "LODO2.spad" 1032838 1032850 1033245 1033284) (-660 "LODO1.spad" 1032238 1032248 1032518 1032557) (-659 "LODO.spad" 1031622 1031638 1031918 1031957) (-658 "LODEEF.spad" 1030424 1030442 1031612 1031617) (-657 "LO.spad" 1029825 1029839 1030358 1030385) (-656 "LNAGG.spad" 1025657 1025667 1029815 1029820) (-655 "LNAGG.spad" 1021453 1021465 1025613 1025618) (-654 "LMOPS.spad" 1018221 1018238 1021443 1021448) (-653 "LMODULE.spad" 1017989 1017999 1018211 1018216) (-652 "LMDICT.spad" 1017276 1017286 1017540 1017567) (-651 "LLINSET.spad" 1016673 1016683 1017266 1017271) (-650 "LITERAL.spad" 1016579 1016590 1016663 1016668) (-649 "LIST3.spad" 1015890 1015904 1016569 1016574) (-648 "LIST2MAP.spad" 1012793 1012805 1015880 1015885) (-647 "LIST2.spad" 1011495 1011507 1012783 1012788) (-646 "LIST.spad" 1009230 1009240 1010642 1010669) (-645 "LINSET.spad" 1008852 1008862 1009220 1009225) (-644 "LINEXP.spad" 1008286 1008296 1008832 1008847) (-643 "LINDEP.spad" 1007095 1007107 1008198 1008203) (-642 "LIMITRF.spad" 1005042 1005052 1007085 1007090) (-641 "LIMITPS.spad" 1003952 1003965 1005032 1005037) (-640 "LIECAT.spad" 1003428 1003438 1003878 1003947) (-639 "LIECAT.spad" 1002932 1002944 1003384 1003389) (-638 "LIE.spad" 1000948 1000960 1002222 1002367) (-637 "LIB.spad" 998998 999006 999607 999622) (-636 "LGROBP.spad" 996351 996370 998988 998993) (-635 "LFCAT.spad" 995410 995418 996341 996346) (-634 "LF.spad" 994365 994381 995400 995405) (-633 "LEXTRIPK.spad" 989868 989883 994355 994360) (-632 "LEXP.spad" 987871 987898 989848 989863) (-631 "LETAST.spad" 987570 987578 987861 987866) (-630 "LEADCDET.spad" 985968 985985 987560 987565) (-629 "LAZM3PK.spad" 984672 984694 985958 985963) (-628 "LAUPOL.spad" 983365 983378 984265 984334) (-627 "LAPLACE.spad" 982948 982964 983355 983360) (-626 "LALG.spad" 982724 982734 982928 982943) (-625 "LALG.spad" 982508 982520 982714 982719) (-624 "LA.spad" 981948 981962 982430 982469) (-623 "KVTFROM.spad" 981683 981693 981938 981943) (-622 "KTVLOGIC.spad" 981195 981203 981673 981678) (-621 "KRCFROM.spad" 980933 980943 981185 981190) (-620 "KOVACIC.spad" 979656 979673 980923 980928) (-619 "KONVERT.spad" 979378 979388 979646 979651) (-618 "KOERCE.spad" 979115 979125 979368 979373) (-617 "KERNEL2.spad" 978818 978830 979105 979110) (-616 "KERNEL.spad" 977473 977483 978602 978607) (-615 "KDAGG.spad" 976582 976604 977453 977468) (-614 "KDAGG.spad" 975699 975723 976572 976577) (-613 "KAFILE.spad" 974662 974678 974897 974924) (-612 "JORDAN.spad" 972491 972503 973952 974097) (-611 "JOINAST.spad" 972185 972193 972481 972486) (-610 "JAVACODE.spad" 972051 972059 972175 972180) (-609 "IXAGG.spad" 970184 970208 972041 972046) (-608 "IXAGG.spad" 968172 968198 970031 970036) (-607 "IVECTOR.spad" 966942 966957 967097 967124) (-606 "ITUPLE.spad" 966103 966113 966932 966937) (-605 "ITRIGMNP.spad" 964942 964961 966093 966098) (-604 "ITFUN3.spad" 964448 964462 964932 964937) (-603 "ITFUN2.spad" 964192 964204 964438 964443) (-602 "ITFORM.spad" 963779 963787 964182 964187) (-601 "ITAYLOR.spad" 961773 961788 963643 963740) (-600 "ISUPS.spad" 954210 954225 960747 960844) (-599 "ISUMP.spad" 953711 953727 954200 954205) (-598 "ISTRING.spad" 952799 952812 952880 952907) (-597 "ISAST.spad" 952518 952526 952789 952794) (-596 "IRURPK.spad" 951235 951254 952508 952513) (-595 "IRSN.spad" 949239 949247 951225 951230) (-594 "IRRF2F.spad" 947724 947734 949195 949200) (-593 "IRREDFFX.spad" 947325 947336 947714 947719) (-592 "IROOT.spad" 945664 945674 947315 947320) (-591 "IRFORM.spad" 945512 945520 945654 945659) (-590 "IR2F.spad" 944718 944734 945502 945507) (-589 "IR2.spad" 943746 943762 944708 944713) (-588 "IR.spad" 941547 941561 943601 943628) (-587 "IPRNTPK.spad" 941307 941315 941537 941542) (-586 "IPF.spad" 940872 940884 941112 941205) (-585 "IPADIC.spad" 940633 940659 940798 940867) (-584 "IP4ADDR.spad" 940190 940198 940623 940628) (-583 "IOMODE.spad" 939811 939819 940180 940185) (-582 "IOBFILE.spad" 939172 939180 939801 939806) (-581 "IOBCON.spad" 939037 939045 939162 939167) (-580 "INVLAPLA.spad" 938686 938702 939027 939032) (-579 "INTTR.spad" 932080 932097 938676 938681) (-578 "INTTOOLS.spad" 929835 929851 931654 931659) (-577 "INTSLPE.spad" 929155 929163 929825 929830) (-576 "INTRVL.spad" 928721 928731 929069 929150) (-575 "INTRF.spad" 927145 927159 928711 928716) (-574 "INTRET.spad" 926577 926587 927135 927140) (-573 "INTRAT.spad" 925304 925321 926567 926572) (-572 "INTPM.spad" 923689 923705 924947 924952) (-571 "INTPAF.spad" 921560 921578 923621 923626) (-570 "INTPACK.spad" 911934 911942 921550 921555) (-569 "INTHERTR.spad" 911208 911225 911924 911929) (-568 "INTHERAL.spad" 910878 910902 911198 911203) (-567 "INTHEORY.spad" 907317 907325 910868 910873) (-566 "INTG0.spad" 901068 901086 907249 907254) (-565 "INTFTBL.spad" 896522 896530 901058 901063) (-564 "INTFACT.spad" 895581 895591 896512 896517) (-563 "INTEF.spad" 893968 893984 895571 895576) (-562 "INTDOM.spad" 892591 892599 893894 893963) (-561 "INTDOM.spad" 891276 891286 892581 892586) (-560 "INTCAT.spad" 889535 889545 891190 891271) (-559 "INTBIT.spad" 889042 889050 889525 889530) (-558 "INTALG.spad" 888230 888257 889032 889037) (-557 "INTAF.spad" 887730 887746 888220 888225) (-556 "INTABL.spad" 886248 886279 886411 886438) (-555 "INT8.spad" 886128 886136 886238 886243) (-554 "INT64.spad" 886007 886015 886118 886123) (-553 "INT32.spad" 885886 885894 885997 886002) (-552 "INT16.spad" 885765 885773 885876 885881) (-551 "INT.spad" 885213 885221 885619 885760) (-550 "INS.spad" 882716 882724 885115 885208) (-549 "INS.spad" 880305 880315 882706 882711) (-548 "INPSIGN.spad" 879775 879788 880295 880300) (-547 "INPRODPF.spad" 878871 878890 879765 879770) (-546 "INPRODFF.spad" 877959 877983 878861 878866) (-545 "INNMFACT.spad" 876934 876951 877949 877954) (-544 "INMODGCD.spad" 876422 876452 876924 876929) (-543 "INFSP.spad" 874719 874741 876412 876417) (-542 "INFPROD0.spad" 873799 873818 874709 874714) (-541 "INFORM1.spad" 873424 873434 873789 873794) (-540 "INFORM.spad" 870623 870631 873414 873419) (-539 "INFINITY.spad" 870175 870183 870613 870618) (-538 "INETCLTS.spad" 870152 870160 870165 870170) (-537 "INEP.spad" 868690 868712 870142 870147) (-536 "INDE.spad" 868419 868436 868680 868685) (-535 "INCRMAPS.spad" 867840 867850 868409 868414) (-534 "INBFILE.spad" 866912 866920 867830 867835) (-533 "INBFF.spad" 862706 862717 866902 866907) (-532 "INBCON.spad" 860996 861004 862696 862701) (-531 "INBCON.spad" 859284 859294 860986 860991) (-530 "INAST.spad" 858945 858953 859274 859279) (-529 "IMPTAST.spad" 858653 858661 858935 858940) (-528 "IMATRIX.spad" 857598 857624 858110 858137) (-527 "IMATQF.spad" 856692 856736 857554 857559) (-526 "IMATLIN.spad" 855297 855321 856648 856653) (-525 "ILIST.spad" 853955 853970 854480 854507) (-524 "IIARRAY2.spad" 853343 853381 853562 853589) (-523 "IFF.spad" 852753 852769 853024 853117) (-522 "IFAST.spad" 852367 852375 852743 852748) (-521 "IFARRAY.spad" 849860 849875 851550 851577) (-520 "IFAMON.spad" 849722 849739 849816 849821) (-519 "IEVALAB.spad" 849127 849139 849712 849717) (-518 "IEVALAB.spad" 848530 848544 849117 849122) (-517 "IDPOAMS.spad" 848286 848298 848520 848525) (-516 "IDPOAM.spad" 848006 848018 848276 848281) (-515 "IDPO.spad" 847804 847816 847996 848001) (-514 "IDPC.spad" 846742 846754 847794 847799) (-513 "IDPAM.spad" 846487 846499 846732 846737) (-512 "IDPAG.spad" 846234 846246 846477 846482) (-511 "IDENT.spad" 845884 845892 846224 846229) (-510 "IDECOMP.spad" 843123 843141 845874 845879) (-509 "IDEAL.spad" 838072 838111 843058 843063) (-508 "ICDEN.spad" 837261 837277 838062 838067) (-507 "ICARD.spad" 836452 836460 837251 837256) (-506 "IBPTOOLS.spad" 835059 835076 836442 836447) (-505 "IBITS.spad" 834262 834275 834695 834722) (-504 "IBATOOL.spad" 831239 831258 834252 834257) (-503 "IBACHIN.spad" 829746 829761 831229 831234) (-502 "IARRAY2.spad" 828734 828760 829353 829380) (-501 "IARRAY1.spad" 827779 827794 827917 827944) (-500 "IAN.spad" 826002 826010 827595 827688) (-499 "IALGFACT.spad" 825605 825638 825992 825997) (-498 "HYPCAT.spad" 825029 825037 825595 825600) (-497 "HYPCAT.spad" 824451 824461 825019 825024) (-496 "HOSTNAME.spad" 824259 824267 824441 824446) (-495 "HOMOTOP.spad" 824002 824012 824249 824254) (-494 "HOAGG.spad" 821284 821294 823992 823997) (-493 "HOAGG.spad" 818341 818353 821051 821056) (-492 "HEXADEC.spad" 816443 816451 816808 816901) (-491 "HEUGCD.spad" 815478 815489 816433 816438) (-490 "HELLFDIV.spad" 815068 815092 815468 815473) (-489 "HEAP.spad" 814460 814470 814675 814702) (-488 "HEADAST.spad" 813993 814001 814450 814455) (-487 "HDP.spad" 803836 803852 804213 804344) (-486 "HDMP.spad" 801050 801065 801666 801793) (-485 "HB.spad" 799301 799309 801040 801045) (-484 "HASHTBL.spad" 797771 797802 797982 798009) (-483 "HASAST.spad" 797487 797495 797761 797766) (-482 "HACKPI.spad" 796978 796986 797389 797482) (-481 "GTSET.spad" 795917 795933 796624 796651) (-480 "GSTBL.spad" 794436 794471 794610 794625) (-479 "GSERIES.spad" 791607 791634 792568 792717) (-478 "GROUP.spad" 790880 790888 791587 791602) (-477 "GROUP.spad" 790161 790171 790870 790875) (-476 "GROEBSOL.spad" 788655 788676 790151 790156) (-475 "GRMOD.spad" 787226 787238 788645 788650) (-474 "GRMOD.spad" 785795 785809 787216 787221) (-473 "GRIMAGE.spad" 778684 778692 785785 785790) (-472 "GRDEF.spad" 777063 777071 778674 778679) (-471 "GRAY.spad" 775526 775534 777053 777058) (-470 "GRALG.spad" 774603 774615 775516 775521) (-469 "GRALG.spad" 773678 773692 774593 774598) (-468 "GPOLSET.spad" 773132 773155 773360 773387) (-467 "GOSPER.spad" 772401 772419 773122 773127) (-466 "GMODPOL.spad" 771549 771576 772369 772396) (-465 "GHENSEL.spad" 770632 770646 771539 771544) (-464 "GENUPS.spad" 766925 766938 770622 770627) (-463 "GENUFACT.spad" 766502 766512 766915 766920) (-462 "GENPGCD.spad" 766088 766105 766492 766497) (-461 "GENMFACT.spad" 765540 765559 766078 766083) (-460 "GENEEZ.spad" 763491 763504 765530 765535) (-459 "GDMP.spad" 760547 760564 761321 761448) (-458 "GCNAALG.spad" 754470 754497 760341 760408) (-457 "GCDDOM.spad" 753646 753654 754396 754465) (-456 "GCDDOM.spad" 752884 752894 753636 753641) (-455 "GBINTERN.spad" 748904 748942 752874 752879) (-454 "GBF.spad" 744671 744709 748894 748899) (-453 "GBEUCLID.spad" 742553 742591 744661 744666) (-452 "GB.spad" 740079 740117 742509 742514) (-451 "GAUSSFAC.spad" 739392 739400 740069 740074) (-450 "GALUTIL.spad" 737718 737728 739348 739353) (-449 "GALPOLYU.spad" 736172 736185 737708 737713) (-448 "GALFACTU.spad" 734345 734364 736162 736167) (-447 "GALFACT.spad" 724534 724545 734335 734340) (-446 "FVFUN.spad" 721557 721565 724524 724529) (-445 "FVC.spad" 720609 720617 721547 721552) (-444 "FUNDESC.spad" 720287 720295 720599 720604) (-443 "FUNCTION.spad" 720136 720148 720277 720282) (-442 "FTEM.spad" 719301 719309 720126 720131) (-441 "FT.spad" 717601 717609 719291 719296) (-440 "FSUPFACT.spad" 716501 716520 717537 717542) (-439 "FST.spad" 714587 714595 716491 716496) (-438 "FSRED.spad" 714067 714083 714577 714582) (-437 "FSPRMELT.spad" 712949 712965 714024 714029) (-436 "FSPECF.spad" 711040 711056 712939 712944) (-435 "FSINT.spad" 710700 710716 711030 711035) (-434 "FSERIES.spad" 709891 709903 710520 710619) (-433 "FSCINT.spad" 709208 709224 709881 709886) (-432 "FSAGG2.spad" 707951 707967 709198 709203) (-431 "FSAGG.spad" 707068 707078 707907 707946) (-430 "FSAGG.spad" 706147 706159 706988 706993) (-429 "FS2UPS.spad" 700638 700672 706137 706142) (-428 "FS2EXPXP.spad" 699763 699786 700628 700633) (-427 "FS2.spad" 699410 699426 699753 699758) (-426 "FS.spad" 693678 693688 699185 699405) (-425 "FS.spad" 687724 687736 693233 693238) (-424 "FRUTIL.spad" 686678 686688 687714 687719) (-423 "FRNAALG.spad" 681797 681807 686620 686673) (-422 "FRNAALG.spad" 676928 676940 681753 681758) (-421 "FRNAAF2.spad" 676384 676402 676918 676923) (-420 "FRMOD.spad" 675794 675824 676315 676320) (-419 "FRIDEAL2.spad" 675398 675430 675784 675789) (-418 "FRIDEAL.spad" 674623 674644 675378 675393) (-417 "FRETRCT.spad" 674134 674144 674613 674618) (-416 "FRETRCT.spad" 673511 673523 673992 673997) (-415 "FRAMALG.spad" 671859 671872 673467 673506) (-414 "FRAMALG.spad" 670239 670254 671849 671854) (-413 "FRAC2.spad" 669844 669856 670229 670234) (-412 "FRAC.spad" 666943 666953 667346 667519) (-411 "FR2.spad" 666279 666291 666933 666938) (-410 "FR.spad" 660022 660032 665303 665372) (-409 "FPS.spad" 656837 656845 659912 660017) (-408 "FPS.spad" 653680 653690 656757 656762) (-407 "FPC.spad" 652726 652734 653582 653675) (-406 "FPC.spad" 651858 651868 652716 652721) (-405 "FPATMAB.spad" 651620 651630 651848 651853) (-404 "FPARFRAC.spad" 650107 650124 651610 651615) (-403 "FORTRAN.spad" 648613 648656 650097 650102) (-402 "FORTFN.spad" 645783 645791 648603 648608) (-401 "FORTCAT.spad" 645467 645475 645773 645778) (-400 "FORT.spad" 644416 644424 645457 645462) (-399 "FORMULA1.spad" 643895 643905 644406 644411) (-398 "FORMULA.spad" 641369 641377 643885 643890) (-397 "FORDER.spad" 641060 641084 641359 641364) (-396 "FOP.spad" 640261 640269 641050 641055) (-395 "FNLA.spad" 639685 639707 640229 640256) (-394 "FNCAT.spad" 638280 638288 639675 639680) (-393 "FNAME.spad" 638172 638180 638270 638275) (-392 "FMTC.spad" 637970 637978 638098 638167) (-391 "FMONOID.spad" 637635 637645 637926 637931) (-390 "FMONCAT.spad" 634788 634798 637625 637630) (-389 "FMFUN.spad" 631818 631826 634778 634783) (-388 "FMCAT.spad" 629486 629504 631786 631813) (-387 "FMC.spad" 628538 628546 629476 629481) (-386 "FM1.spad" 627895 627907 628472 628499) (-385 "FM.spad" 627590 627602 627829 627856) (-384 "FLOATRP.spad" 625325 625339 627580 627585) (-383 "FLOATCP.spad" 622756 622770 625315 625320) (-382 "FLOAT.spad" 616070 616078 622622 622751) (-381 "FLINEXP.spad" 615782 615792 616050 616065) (-380 "FLINEXP.spad" 615448 615460 615718 615723) (-379 "FLASORT.spad" 614774 614786 615438 615443) (-378 "FLALG.spad" 612420 612439 614700 614769) (-377 "FLAGG2.spad" 611145 611161 612410 612415) (-376 "FLAGG.spad" 608187 608197 611125 611140) (-375 "FLAGG.spad" 605130 605142 608070 608075) (-374 "FINRALG.spad" 603191 603204 605086 605125) (-373 "FINRALG.spad" 601178 601193 603075 603080) (-372 "FINITE.spad" 600330 600338 601168 601173) (-371 "FINAALG.spad" 589451 589461 600272 600325) (-370 "FINAALG.spad" 578584 578596 589407 589412) (-369 "FILECAT.spad" 577110 577127 578574 578579) (-368 "FILE.spad" 576693 576703 577100 577105) (-367 "FIELD.spad" 576099 576107 576595 576688) (-366 "FIELD.spad" 575591 575601 576089 576094) (-365 "FGROUP.spad" 574238 574248 575571 575586) (-364 "FGLMICPK.spad" 573025 573040 574228 574233) (-363 "FFX.spad" 572400 572415 572741 572834) (-362 "FFSLPE.spad" 571903 571924 572390 572395) (-361 "FFPOLY2.spad" 570963 570980 571893 571898) (-360 "FFPOLY.spad" 562225 562236 570953 570958) (-359 "FFP.spad" 561622 561642 561941 562034) (-358 "FFNBX.spad" 560134 560154 561338 561431) (-357 "FFNBP.spad" 558647 558664 559850 559943) (-356 "FFNB.spad" 557112 557133 558328 558421) (-355 "FFINTBAS.spad" 554626 554645 557102 557107) (-354 "FFIELDC.spad" 552203 552211 554528 554621) (-353 "FFIELDC.spad" 549866 549876 552193 552198) (-352 "FFHOM.spad" 548614 548631 549856 549861) (-351 "FFF.spad" 546049 546060 548604 548609) (-350 "FFCGX.spad" 544896 544916 545765 545858) (-349 "FFCGP.spad" 543785 543805 544612 544705) (-348 "FFCG.spad" 542577 542598 543466 543559) (-347 "FFCAT2.spad" 542324 542364 542567 542572) (-346 "FFCAT.spad" 535497 535519 542163 542319) (-345 "FFCAT.spad" 528749 528773 535417 535422) (-344 "FF.spad" 528197 528213 528430 528523) (-343 "FEXPR.spad" 519914 519960 527953 527992) (-342 "FEVALAB.spad" 519622 519632 519904 519909) (-341 "FEVALAB.spad" 519115 519127 519399 519404) (-340 "FDIVCAT.spad" 517179 517203 519105 519110) (-339 "FDIVCAT.spad" 515241 515267 517169 517174) (-338 "FDIV2.spad" 514897 514937 515231 515236) (-337 "FDIV.spad" 514339 514363 514887 514892) (-336 "FCTRDATA.spad" 513347 513355 514329 514334) (-335 "FCPAK1.spad" 511914 511922 513337 513342) (-334 "FCOMP.spad" 511293 511303 511904 511909) (-333 "FC.spad" 501300 501308 511283 511288) (-332 "FAXF.spad" 494271 494285 501202 501295) (-331 "FAXF.spad" 487294 487310 494227 494232) (-330 "FARRAY.spad" 485444 485454 486477 486504) (-329 "FAMR.spad" 483580 483592 485342 485439) (-328 "FAMR.spad" 481700 481714 483464 483469) (-327 "FAMONOID.spad" 481368 481378 481654 481659) (-326 "FAMONC.spad" 479664 479676 481358 481363) (-325 "FAGROUP.spad" 479288 479298 479560 479587) (-324 "FACUTIL.spad" 477492 477509 479278 479283) (-323 "FACTFUNC.spad" 476686 476696 477482 477487) (-322 "EXPUPXS.spad" 473519 473542 474818 474967) (-321 "EXPRTUBE.spad" 470807 470815 473509 473514) (-320 "EXPRODE.spad" 467967 467983 470797 470802) (-319 "EXPR2UPS.spad" 464089 464102 467957 467962) (-318 "EXPR2.spad" 463794 463806 464079 464084) (-317 "EXPR.spad" 459069 459079 459783 460190) (-316 "EXPEXPAN.spad" 456009 456034 456641 456734) (-315 "EXITAST.spad" 455745 455753 455999 456004) (-314 "EXIT.spad" 455416 455424 455735 455740) (-313 "EVALCYC.spad" 454876 454890 455406 455411) (-312 "EVALAB.spad" 454448 454458 454866 454871) (-311 "EVALAB.spad" 454018 454030 454438 454443) (-310 "EUCDOM.spad" 451592 451600 453944 454013) (-309 "EUCDOM.spad" 449228 449238 451582 451587) (-308 "ESTOOLS2.spad" 448831 448845 449218 449223) (-307 "ESTOOLS1.spad" 448516 448527 448821 448826) (-306 "ESTOOLS.spad" 440362 440370 448506 448511) (-305 "ESCONT1.spad" 440111 440123 440352 440357) (-304 "ESCONT.spad" 436904 436912 440101 440106) (-303 "ES2.spad" 436409 436425 436894 436899) (-302 "ES1.spad" 435979 435995 436399 436404) (-301 "ES.spad" 428794 428802 435969 435974) (-300 "ES.spad" 421515 421525 428692 428697) (-299 "ERROR.spad" 418842 418850 421505 421510) (-298 "EQTBL.spad" 417314 417336 417523 417550) (-297 "EQ2.spad" 417032 417044 417304 417309) (-296 "EQ.spad" 411837 411847 414624 414736) (-295 "EP.spad" 408163 408173 411827 411832) (-294 "ENV.spad" 406825 406833 408153 408158) (-293 "ENTIRER.spad" 406493 406501 406769 406820) (-292 "EMR.spad" 405700 405741 406419 406488) (-291 "ELTAGG.spad" 403954 403973 405690 405695) (-290 "ELTAGG.spad" 402172 402193 403910 403915) (-289 "ELTAB.spad" 401621 401639 402162 402167) (-288 "ELFUTS.spad" 401008 401027 401611 401616) (-287 "ELEMFUN.spad" 400697 400705 400998 401003) (-286 "ELEMFUN.spad" 400384 400394 400687 400692) (-285 "ELAGG.spad" 398355 398365 400364 400379) (-284 "ELAGG.spad" 396263 396275 398274 398279) (-283 "ELABOR.spad" 395609 395617 396253 396258) (-282 "ELABEXPR.spad" 394541 394549 395599 395604) (-281 "EFUPXS.spad" 391317 391347 394497 394502) (-280 "EFULS.spad" 388153 388176 391273 391278) (-279 "EFSTRUC.spad" 386168 386184 388143 388148) (-278 "EF.spad" 380944 380960 386158 386163) (-277 "EAB.spad" 379220 379228 380934 380939) (-276 "E04UCFA.spad" 378756 378764 379210 379215) (-275 "E04NAFA.spad" 378333 378341 378746 378751) (-274 "E04MBFA.spad" 377913 377921 378323 378328) (-273 "E04JAFA.spad" 377449 377457 377903 377908) (-272 "E04GCFA.spad" 376985 376993 377439 377444) (-271 "E04FDFA.spad" 376521 376529 376975 376980) (-270 "E04DGFA.spad" 376057 376065 376511 376516) (-269 "E04AGNT.spad" 371907 371915 376047 376052) (-268 "DVARCAT.spad" 368596 368606 371897 371902) (-267 "DVARCAT.spad" 365283 365295 368586 368591) (-266 "DSMP.spad" 362750 362764 363055 363182) (-265 "DROPT1.spad" 362415 362425 362740 362745) (-264 "DROPT0.spad" 357272 357280 362405 362410) (-263 "DROPT.spad" 351231 351239 357262 357267) (-262 "DRAWPT.spad" 349404 349412 351221 351226) (-261 "DRAWHACK.spad" 348712 348722 349394 349399) (-260 "DRAWCX.spad" 346182 346190 348702 348707) (-259 "DRAWCURV.spad" 345729 345744 346172 346177) (-258 "DRAWCFUN.spad" 335261 335269 345719 345724) (-257 "DRAW.spad" 328137 328150 335251 335256) (-256 "DQAGG.spad" 326315 326325 328105 328132) (-255 "DPOLCAT.spad" 321664 321680 326183 326310) (-254 "DPOLCAT.spad" 317099 317117 321620 321625) (-253 "DPMO.spad" 309325 309341 309463 309764) (-252 "DPMM.spad" 301564 301582 301689 301990) (-251 "DOMTMPLT.spad" 301224 301232 301554 301559) (-250 "DOMCTOR.spad" 300979 300987 301214 301219) (-249 "DOMAIN.spad" 300066 300074 300969 300974) (-248 "DMP.spad" 297326 297341 297896 298023) (-247 "DLP.spad" 296678 296688 297316 297321) (-246 "DLIST.spad" 295257 295267 295861 295888) (-245 "DLAGG.spad" 293674 293684 295247 295252) (-244 "DIVRING.spad" 293216 293224 293618 293669) (-243 "DIVRING.spad" 292802 292812 293206 293211) (-242 "DISPLAY.spad" 290992 291000 292792 292797) (-241 "DIRPROD2.spad" 289810 289828 290982 290987) (-240 "DIRPROD.spad" 279390 279406 280030 280161) (-239 "DIRPCAT.spad" 278334 278350 279254 279385) (-238 "DIRPCAT.spad" 277007 277025 277929 277934) (-237 "DIOSP.spad" 275832 275840 276997 277002) (-236 "DIOPS.spad" 274828 274838 275812 275827) (-235 "DIOPS.spad" 273798 273810 274784 274789) (-234 "DIFRING.spad" 273094 273102 273778 273793) (-233 "DIFRING.spad" 272398 272408 273084 273089) (-232 "DIFEXT.spad" 271569 271579 272378 272393) (-231 "DIFEXT.spad" 270657 270669 271468 271473) (-230 "DIAGG.spad" 270287 270297 270637 270652) (-229 "DIAGG.spad" 269925 269937 270277 270282) (-228 "DHMATRIX.spad" 268237 268247 269382 269409) (-227 "DFSFUN.spad" 261877 261885 268227 268232) (-226 "DFLOAT.spad" 258608 258616 261767 261872) (-225 "DFINTTLS.spad" 256839 256855 258598 258603) (-224 "DERHAM.spad" 254753 254785 256819 256834) (-223 "DEQUEUE.spad" 254077 254087 254360 254387) (-222 "DEGRED.spad" 253694 253708 254067 254072) (-221 "DEFINTRF.spad" 251276 251286 253684 253689) (-220 "DEFINTEF.spad" 249814 249830 251266 251271) (-219 "DEFAST.spad" 249182 249190 249804 249809) (-218 "DECIMAL.spad" 247288 247296 247649 247742) (-217 "DDFACT.spad" 245101 245118 247278 247283) (-216 "DBLRESP.spad" 244701 244725 245091 245096) (-215 "DBASE.spad" 243365 243375 244691 244696) (-214 "DATAARY.spad" 242827 242840 243355 243360) (-213 "D03FAFA.spad" 242655 242663 242817 242822) (-212 "D03EEFA.spad" 242475 242483 242645 242650) (-211 "D03AGNT.spad" 241561 241569 242465 242470) (-210 "D02EJFA.spad" 241023 241031 241551 241556) (-209 "D02CJFA.spad" 240501 240509 241013 241018) (-208 "D02BHFA.spad" 239991 239999 240491 240496) (-207 "D02BBFA.spad" 239481 239489 239981 239986) (-206 "D02AGNT.spad" 234295 234303 239471 239476) (-205 "D01WGTS.spad" 232614 232622 234285 234290) (-204 "D01TRNS.spad" 232591 232599 232604 232609) (-203 "D01GBFA.spad" 232113 232121 232581 232586) (-202 "D01FCFA.spad" 231635 231643 232103 232108) (-201 "D01ASFA.spad" 231103 231111 231625 231630) (-200 "D01AQFA.spad" 230549 230557 231093 231098) (-199 "D01APFA.spad" 229973 229981 230539 230544) (-198 "D01ANFA.spad" 229467 229475 229963 229968) (-197 "D01AMFA.spad" 228977 228985 229457 229462) (-196 "D01ALFA.spad" 228517 228525 228967 228972) (-195 "D01AKFA.spad" 228043 228051 228507 228512) (-194 "D01AJFA.spad" 227566 227574 228033 228038) (-193 "D01AGNT.spad" 223633 223641 227556 227561) (-192 "CYCLOTOM.spad" 223139 223147 223623 223628) (-191 "CYCLES.spad" 219995 220003 223129 223134) (-190 "CVMP.spad" 219412 219422 219985 219990) (-189 "CTRIGMNP.spad" 217912 217928 219402 219407) (-188 "CTORKIND.spad" 217515 217523 217902 217907) (-187 "CTORCAT.spad" 216764 216772 217505 217510) (-186 "CTORCAT.spad" 216011 216021 216754 216759) (-185 "CTORCALL.spad" 215600 215610 216001 216006) (-184 "CTOR.spad" 215291 215299 215590 215595) (-183 "CSTTOOLS.spad" 214536 214549 215281 215286) (-182 "CRFP.spad" 208260 208273 214526 214531) (-181 "CRCEAST.spad" 207980 207988 208250 208255) (-180 "CRAPACK.spad" 207031 207041 207970 207975) (-179 "CPMATCH.spad" 206535 206550 206956 206961) (-178 "CPIMA.spad" 206240 206259 206525 206530) (-177 "COORDSYS.spad" 201249 201259 206230 206235) (-176 "CONTOUR.spad" 200660 200668 201239 201244) (-175 "CONTFRAC.spad" 196410 196420 200562 200655) (-174 "CONDUIT.spad" 196168 196176 196400 196405) (-173 "COMRING.spad" 195842 195850 196106 196163) (-172 "COMPPROP.spad" 195360 195368 195832 195837) (-171 "COMPLPAT.spad" 195127 195142 195350 195355) (-170 "COMPLEX2.spad" 194842 194854 195117 195122) (-169 "COMPLEX.spad" 188979 188989 189223 189484) (-168 "COMPILER.spad" 188528 188536 188969 188974) (-167 "COMPFACT.spad" 188130 188144 188518 188523) (-166 "COMPCAT.spad" 186202 186212 187864 188125) (-165 "COMPCAT.spad" 184002 184014 185666 185671) (-164 "COMMUPC.spad" 183750 183768 183992 183997) (-163 "COMMONOP.spad" 183283 183291 183740 183745) (-162 "COMMAAST.spad" 183046 183054 183273 183278) (-161 "COMM.spad" 182857 182865 183036 183041) (-160 "COMBOPC.spad" 181772 181780 182847 182852) (-159 "COMBINAT.spad" 180539 180549 181762 181767) (-158 "COMBF.spad" 177921 177937 180529 180534) (-157 "COLOR.spad" 176758 176766 177911 177916) (-156 "COLONAST.spad" 176424 176432 176748 176753) (-155 "CMPLXRT.spad" 176135 176152 176414 176419) (-154 "CLLCTAST.spad" 175797 175805 176125 176130) (-153 "CLIP.spad" 171905 171913 175787 175792) (-152 "CLIF.spad" 170560 170576 171861 171900) (-151 "CLAGG.spad" 167065 167075 170550 170555) (-150 "CLAGG.spad" 163441 163453 166928 166933) (-149 "CINTSLPE.spad" 162772 162785 163431 163436) (-148 "CHVAR.spad" 160910 160932 162762 162767) (-147 "CHARZ.spad" 160825 160833 160890 160905) (-146 "CHARPOL.spad" 160335 160345 160815 160820) (-145 "CHARNZ.spad" 160088 160096 160315 160330) (-144 "CHAR.spad" 157962 157970 160078 160083) (-143 "CFCAT.spad" 157290 157298 157952 157957) (-142 "CDEN.spad" 156486 156500 157280 157285) (-141 "CCLASS.spad" 154635 154643 155897 155936) (-140 "CATEGORY.spad" 153677 153685 154625 154630) (-139 "CATCTOR.spad" 153568 153576 153667 153672) (-138 "CATAST.spad" 153186 153194 153558 153563) (-137 "CASEAST.spad" 152900 152908 153176 153181) (-136 "CARTEN2.spad" 152290 152317 152890 152895) (-135 "CARTEN.spad" 147577 147601 152280 152285) (-134 "CARD.spad" 144872 144880 147551 147572) (-133 "CAPSLAST.spad" 144646 144654 144862 144867) (-132 "CACHSET.spad" 144270 144278 144636 144641) (-131 "CABMON.spad" 143825 143833 144260 144265) (-130 "BYTEORD.spad" 143500 143508 143815 143820) (-129 "BYTEBUF.spad" 141359 141367 142669 142696) (-128 "BYTE.spad" 140786 140794 141349 141354) (-127 "BTREE.spad" 139859 139869 140393 140420) (-126 "BTOURN.spad" 138864 138874 139466 139493) (-125 "BTCAT.spad" 138256 138266 138832 138859) (-124 "BTCAT.spad" 137668 137680 138246 138251) (-123 "BTAGG.spad" 136796 136804 137636 137663) (-122 "BTAGG.spad" 135944 135954 136786 136791) (-121 "BSTREE.spad" 134685 134695 135551 135578) (-120 "BRILL.spad" 132882 132893 134675 134680) (-119 "BRAGG.spad" 131822 131832 132872 132877) (-118 "BRAGG.spad" 130726 130738 131778 131783) (-117 "BPADICRT.spad" 128707 128719 128962 129055) (-116 "BPADIC.spad" 128371 128383 128633 128702) (-115 "BOUNDZRO.spad" 128027 128044 128361 128366) (-114 "BOP1.spad" 125493 125503 128017 128022) (-113 "BOP.spad" 120675 120683 125483 125488) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP80.spad" 96764 96777 97432 97437) (-87 "ASP8.spad" 95807 95820 96754 96759) (-86 "ASP78.spad" 95258 95271 95797 95802) (-85 "ASP77.spad" 94627 94640 95248 95253) (-84 "ASP74.spad" 93719 93732 94617 94622) (-83 "ASP73.spad" 92990 93003 93709 93714) (-82 "ASP7.spad" 92150 92163 92980 92985) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP49.spad" 86342 86355 87333 87338) (-77 "ASP42.spad" 84749 84788 86332 86337) (-76 "ASP41.spad" 83328 83367 84739 84744) (-75 "ASP4.spad" 82623 82636 83318 83323) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP19.spad" 61377 61390 66681 66686) (-63 "ASP12.spad" 60791 60804 61367 61372) (-62 "ASP10.spad" 60062 60075 60781 60786) (-61 "ASP1.spad" 59443 59456 60052 60057) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY12.spad" 57516 57527 58793 58798) (-58 "ARRAY1.spad" 56353 56362 56699 56726) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY1.spad" 45243 45252 46162 46167) (-51 "ANY.spad" 44102 44109 45233 45238) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2265877 2265882 2265887 2265892) (-2 NIL 2265857 2265862 2265867 2265872) (-1 NIL 2265837 2265842 2265847 2265852) (0 NIL 2265817 2265822 2265827 2265832) (-1301 "ZMOD.spad" 2265626 2265639 2265755 2265812) (-1300 "ZLINDEP.spad" 2264692 2264703 2265616 2265621) (-1299 "ZDSOLVE.spad" 2254637 2254659 2264682 2264687) (-1298 "YSTREAM.spad" 2254132 2254143 2254627 2254632) (-1297 "XRPOLY.spad" 2253352 2253372 2253988 2254057) (-1296 "XPR.spad" 2251147 2251160 2253070 2253169) (-1295 "XPOLYC.spad" 2250466 2250482 2251073 2251142) (-1294 "XPOLY.spad" 2250021 2250032 2250322 2250391) (-1293 "XPBWPOLY.spad" 2248458 2248478 2249801 2249870) (-1292 "XFALG.spad" 2245506 2245522 2248384 2248453) (-1291 "XF.spad" 2243969 2243984 2245408 2245501) (-1290 "XF.spad" 2242412 2242429 2243853 2243858) (-1289 "XEXPPKG.spad" 2241663 2241689 2242402 2242407) (-1288 "XDPOLY.spad" 2241277 2241293 2241519 2241588) (-1287 "XALG.spad" 2240937 2240948 2241233 2241272) (-1286 "WUTSET.spad" 2236776 2236793 2240583 2240610) (-1285 "WP.spad" 2235975 2236019 2236634 2236701) (-1284 "WHILEAST.spad" 2235773 2235782 2235965 2235970) (-1283 "WHEREAST.spad" 2235444 2235453 2235763 2235768) (-1282 "WFFINTBS.spad" 2233107 2233129 2235434 2235439) (-1281 "WEIER.spad" 2231329 2231340 2233097 2233102) (-1280 "VSPACE.spad" 2231002 2231013 2231297 2231324) (-1279 "VSPACE.spad" 2230695 2230708 2230992 2230997) (-1278 "VOID.spad" 2230372 2230381 2230685 2230690) (-1277 "VIEWDEF.spad" 2225573 2225582 2230362 2230367) (-1276 "VIEW3D.spad" 2209534 2209543 2225563 2225568) (-1275 "VIEW2D.spad" 2197425 2197434 2209524 2209529) (-1274 "VIEW.spad" 2195105 2195114 2197415 2197420) (-1273 "VECTOR2.spad" 2193744 2193757 2195095 2195100) (-1272 "VECTOR.spad" 2192418 2192429 2192669 2192696) (-1271 "VECTCAT.spad" 2190322 2190333 2192386 2192413) (-1270 "VECTCAT.spad" 2188033 2188046 2190099 2190104) (-1269 "VARIABLE.spad" 2187813 2187828 2188023 2188028) (-1268 "UTYPE.spad" 2187457 2187466 2187803 2187808) (-1267 "UTSODETL.spad" 2186752 2186776 2187413 2187418) (-1266 "UTSODE.spad" 2184968 2184988 2186742 2186747) (-1265 "UTSCAT.spad" 2182447 2182463 2184866 2184963) (-1264 "UTSCAT.spad" 2179570 2179588 2181991 2181996) (-1263 "UTS2.spad" 2179165 2179200 2179560 2179565) (-1262 "UTS.spad" 2173969 2173997 2177632 2177729) (-1261 "URAGG.spad" 2168642 2168653 2173959 2173964) (-1260 "URAGG.spad" 2163279 2163292 2168598 2168603) (-1259 "UPXSSING.spad" 2160924 2160950 2162360 2162493) (-1258 "UPXSCONS.spad" 2158683 2158703 2159056 2159205) (-1257 "UPXSCCA.spad" 2157254 2157274 2158529 2158678) (-1256 "UPXSCCA.spad" 2155967 2155989 2157244 2157249) (-1255 "UPXSCAT.spad" 2154556 2154572 2155813 2155962) (-1254 "UPXS2.spad" 2154099 2154152 2154546 2154551) (-1253 "UPXS.spad" 2151253 2151281 2152231 2152380) (-1252 "UPSQFREE.spad" 2149668 2149682 2151243 2151248) (-1251 "UPSCAT.spad" 2147279 2147303 2149566 2149663) (-1250 "UPSCAT.spad" 2144596 2144622 2146885 2146890) (-1249 "UPOLYC2.spad" 2144067 2144086 2144586 2144591) (-1248 "UPOLYC.spad" 2139107 2139118 2143909 2144062) (-1247 "UPOLYC.spad" 2134039 2134052 2138843 2138848) (-1246 "UPMP.spad" 2132939 2132952 2134029 2134034) (-1245 "UPDIVP.spad" 2132504 2132518 2132929 2132934) (-1244 "UPDECOMP.spad" 2130749 2130763 2132494 2132499) (-1243 "UPCDEN.spad" 2129958 2129974 2130739 2130744) (-1242 "UP2.spad" 2129322 2129343 2129948 2129953) (-1241 "UP.spad" 2126521 2126536 2126908 2127061) (-1240 "UNISEG2.spad" 2126018 2126031 2126477 2126482) (-1239 "UNISEG.spad" 2125371 2125382 2125937 2125942) (-1238 "UNIFACT.spad" 2124474 2124486 2125361 2125366) (-1237 "ULSCONS.spad" 2116870 2116890 2117240 2117389) (-1236 "ULSCCAT.spad" 2114607 2114627 2116716 2116865) (-1235 "ULSCCAT.spad" 2112452 2112474 2114563 2114568) (-1234 "ULSCAT.spad" 2110684 2110700 2112298 2112447) (-1233 "ULS2.spad" 2110198 2110251 2110674 2110679) (-1232 "ULS.spad" 2100756 2100784 2101843 2102272) (-1231 "UINT8.spad" 2100633 2100642 2100746 2100751) (-1230 "UINT64.spad" 2100509 2100518 2100623 2100628) (-1229 "UINT32.spad" 2100385 2100394 2100499 2100504) (-1228 "UINT16.spad" 2100261 2100270 2100375 2100380) (-1227 "UFD.spad" 2099326 2099335 2100187 2100256) (-1226 "UFD.spad" 2098453 2098464 2099316 2099321) (-1225 "UDVO.spad" 2097334 2097343 2098443 2098448) (-1224 "UDPO.spad" 2094827 2094838 2097290 2097295) (-1223 "TYPEAST.spad" 2094746 2094755 2094817 2094822) (-1222 "TYPE.spad" 2094678 2094687 2094736 2094741) (-1221 "TWOFACT.spad" 2093330 2093345 2094668 2094673) (-1220 "TUPLE.spad" 2092816 2092827 2093229 2093234) (-1219 "TUBETOOL.spad" 2089683 2089692 2092806 2092811) (-1218 "TUBE.spad" 2088330 2088347 2089673 2089678) (-1217 "TSETCAT.spad" 2075457 2075474 2088298 2088325) (-1216 "TSETCAT.spad" 2062570 2062589 2075413 2075418) (-1215 "TS.spad" 2061169 2061185 2062135 2062232) (-1214 "TRMANIP.spad" 2055535 2055552 2060875 2060880) (-1213 "TRIMAT.spad" 2054498 2054523 2055525 2055530) (-1212 "TRIGMNIP.spad" 2053025 2053042 2054488 2054493) (-1211 "TRIGCAT.spad" 2052537 2052546 2053015 2053020) (-1210 "TRIGCAT.spad" 2052047 2052058 2052527 2052532) (-1209 "TREE.spad" 2050622 2050633 2051654 2051681) (-1208 "TRANFUN.spad" 2050461 2050470 2050612 2050617) (-1207 "TRANFUN.spad" 2050298 2050309 2050451 2050456) (-1206 "TOPSP.spad" 2049972 2049981 2050288 2050293) (-1205 "TOOLSIGN.spad" 2049635 2049646 2049962 2049967) (-1204 "TEXTFILE.spad" 2048196 2048205 2049625 2049630) (-1203 "TEX1.spad" 2047752 2047763 2048186 2048191) (-1202 "TEX.spad" 2044898 2044907 2047742 2047747) (-1201 "TEMUTL.spad" 2044453 2044462 2044888 2044893) (-1200 "TBCMPPK.spad" 2042546 2042569 2044443 2044448) (-1199 "TBAGG.spad" 2041596 2041619 2042526 2042541) (-1198 "TBAGG.spad" 2040654 2040679 2041586 2041591) (-1197 "TANEXP.spad" 2040062 2040073 2040644 2040649) (-1196 "TABLEAU.spad" 2039543 2039554 2040052 2040057) (-1195 "TABLE.spad" 2037954 2037977 2038224 2038251) (-1194 "TABLBUMP.spad" 2034757 2034768 2037944 2037949) (-1193 "SYSTEM.spad" 2033985 2033994 2034747 2034752) (-1192 "SYSSOLP.spad" 2031468 2031479 2033975 2033980) (-1191 "SYSPTR.spad" 2031367 2031376 2031458 2031463) (-1190 "SYSNNI.spad" 2030549 2030560 2031357 2031362) (-1189 "SYSINT.spad" 2029953 2029964 2030539 2030544) (-1188 "SYNTAX.spad" 2026159 2026168 2029943 2029948) (-1187 "SYMTAB.spad" 2024227 2024236 2026149 2026154) (-1186 "SYMS.spad" 2020256 2020265 2024217 2024222) (-1185 "SYMPOLY.spad" 2019263 2019274 2019345 2019472) (-1184 "SYMFUNC.spad" 2018764 2018775 2019253 2019258) (-1183 "SYMBOL.spad" 2016267 2016276 2018754 2018759) (-1182 "SWITCH.spad" 2013038 2013047 2016257 2016262) (-1181 "SUTS.spad" 2009943 2009971 2011505 2011602) (-1180 "SUPXS.spad" 2007084 2007112 2008075 2008224) (-1179 "SUPFRACF.spad" 2006189 2006207 2007074 2007079) (-1178 "SUP2.spad" 2005581 2005594 2006179 2006184) (-1177 "SUP.spad" 2002394 2002405 2003167 2003320) (-1176 "SUMRF.spad" 2001368 2001379 2002384 2002389) (-1175 "SUMFS.spad" 2001005 2001022 2001358 2001363) (-1174 "SULS.spad" 1991550 1991578 1992650 1993079) (-1173 "SUCHTAST.spad" 1991319 1991328 1991540 1991545) (-1172 "SUCH.spad" 1991001 1991016 1991309 1991314) (-1171 "SUBSPACE.spad" 1983116 1983131 1990991 1990996) (-1170 "SUBRESP.spad" 1982286 1982300 1983072 1983077) (-1169 "STTFNC.spad" 1978754 1978770 1982276 1982281) (-1168 "STTF.spad" 1974853 1974869 1978744 1978749) (-1167 "STTAYLOR.spad" 1967488 1967499 1974734 1974739) (-1166 "STRTBL.spad" 1965993 1966010 1966142 1966169) (-1165 "STRING.spad" 1965402 1965411 1965416 1965443) (-1164 "STRICAT.spad" 1965190 1965199 1965370 1965397) (-1163 "STREAM3.spad" 1964763 1964778 1965180 1965185) (-1162 "STREAM2.spad" 1963891 1963904 1964753 1964758) (-1161 "STREAM1.spad" 1963597 1963608 1963881 1963886) (-1160 "STREAM.spad" 1960515 1960526 1963122 1963137) (-1159 "STINPROD.spad" 1959451 1959467 1960505 1960510) (-1158 "STEPAST.spad" 1958685 1958694 1959441 1959446) (-1157 "STEP.spad" 1957886 1957895 1958675 1958680) (-1156 "STBL.spad" 1956412 1956440 1956579 1956594) (-1155 "STAGG.spad" 1955487 1955498 1956402 1956407) (-1154 "STAGG.spad" 1954560 1954573 1955477 1955482) (-1153 "STACK.spad" 1953917 1953928 1954167 1954194) (-1152 "SREGSET.spad" 1951621 1951638 1953563 1953590) (-1151 "SRDCMPK.spad" 1950182 1950202 1951611 1951616) (-1150 "SRAGG.spad" 1945325 1945334 1950150 1950177) (-1149 "SRAGG.spad" 1940488 1940499 1945315 1945320) (-1148 "SQMATRIX.spad" 1938104 1938122 1939020 1939107) (-1147 "SPLTREE.spad" 1932656 1932669 1937540 1937567) (-1146 "SPLNODE.spad" 1929244 1929257 1932646 1932651) (-1145 "SPFCAT.spad" 1928053 1928062 1929234 1929239) (-1144 "SPECOUT.spad" 1926605 1926614 1928043 1928048) (-1143 "SPADXPT.spad" 1918200 1918209 1926595 1926600) (-1142 "spad-parser.spad" 1917665 1917674 1918190 1918195) (-1141 "SPADAST.spad" 1917366 1917375 1917655 1917660) (-1140 "SPACEC.spad" 1901565 1901576 1917356 1917361) (-1139 "SPACE3.spad" 1901341 1901352 1901555 1901560) (-1138 "SORTPAK.spad" 1900890 1900903 1901297 1901302) (-1137 "SOLVETRA.spad" 1898653 1898664 1900880 1900885) (-1136 "SOLVESER.spad" 1897181 1897192 1898643 1898648) (-1135 "SOLVERAD.spad" 1893207 1893218 1897171 1897176) (-1134 "SOLVEFOR.spad" 1891669 1891687 1893197 1893202) (-1133 "SNTSCAT.spad" 1891269 1891286 1891637 1891664) (-1132 "SMTS.spad" 1889541 1889567 1890834 1890931) (-1131 "SMP.spad" 1887016 1887036 1887406 1887533) (-1130 "SMITH.spad" 1885861 1885886 1887006 1887011) (-1129 "SMATCAT.spad" 1883971 1884001 1885805 1885856) (-1128 "SMATCAT.spad" 1882013 1882045 1883849 1883854) (-1127 "SKAGG.spad" 1880976 1880987 1881981 1882008) (-1126 "SINT.spad" 1879808 1879817 1880842 1880971) (-1125 "SIMPAN.spad" 1879536 1879545 1879798 1879803) (-1124 "SIGNRF.spad" 1878661 1878672 1879526 1879531) (-1123 "SIGNEF.spad" 1877947 1877964 1878651 1878656) (-1122 "SIGAST.spad" 1877332 1877341 1877937 1877942) (-1121 "SIG.spad" 1876662 1876671 1877322 1877327) (-1120 "SHP.spad" 1874590 1874605 1876618 1876623) (-1119 "SHDP.spad" 1864301 1864328 1864810 1864941) (-1118 "SGROUP.spad" 1863909 1863918 1864291 1864296) (-1117 "SGROUP.spad" 1863515 1863526 1863899 1863904) (-1116 "SGCF.spad" 1856678 1856687 1863505 1863510) (-1115 "SFRTCAT.spad" 1855608 1855625 1856646 1856673) (-1114 "SFRGCD.spad" 1854671 1854691 1855598 1855603) (-1113 "SFQCMPK.spad" 1849308 1849328 1854661 1854666) (-1112 "SFORT.spad" 1848747 1848761 1849298 1849303) (-1111 "SEXOF.spad" 1848590 1848630 1848737 1848742) (-1110 "SEXCAT.spad" 1846191 1846231 1848580 1848585) (-1109 "SEX.spad" 1846083 1846092 1846181 1846186) (-1108 "SETMN.spad" 1844535 1844552 1846073 1846078) (-1107 "SETCAT.spad" 1843857 1843866 1844525 1844530) (-1106 "SETCAT.spad" 1843177 1843188 1843847 1843852) (-1105 "SETAGG.spad" 1839726 1839737 1843157 1843172) (-1104 "SETAGG.spad" 1836283 1836296 1839716 1839721) (-1103 "SET.spad" 1834607 1834618 1835704 1835743) (-1102 "SEQAST.spad" 1834310 1834319 1834597 1834602) (-1101 "SEGXCAT.spad" 1833466 1833479 1834300 1834305) (-1100 "SEGCAT.spad" 1832391 1832402 1833456 1833461) (-1099 "SEGBIND2.spad" 1832089 1832102 1832381 1832386) (-1098 "SEGBIND.spad" 1831847 1831858 1832036 1832041) (-1097 "SEGAST.spad" 1831561 1831570 1831837 1831842) (-1096 "SEG2.spad" 1830996 1831009 1831517 1831522) (-1095 "SEG.spad" 1830809 1830820 1830915 1830920) (-1094 "SDVAR.spad" 1830085 1830096 1830799 1830804) (-1093 "SDPOL.spad" 1827511 1827522 1827802 1827929) (-1092 "SCPKG.spad" 1825600 1825611 1827501 1827506) (-1091 "SCOPE.spad" 1824753 1824762 1825590 1825595) (-1090 "SCACHE.spad" 1823449 1823460 1824743 1824748) (-1089 "SASTCAT.spad" 1823358 1823367 1823439 1823444) (-1088 "SAOS.spad" 1823230 1823239 1823348 1823353) (-1087 "SAERFFC.spad" 1822943 1822963 1823220 1823225) (-1086 "SAEFACT.spad" 1822644 1822664 1822933 1822938) (-1085 "SAE.spad" 1820819 1820835 1821430 1821565) (-1084 "RURPK.spad" 1818478 1818494 1820809 1820814) (-1083 "RULESET.spad" 1817931 1817955 1818468 1818473) (-1082 "RULECOLD.spad" 1817783 1817796 1817921 1817926) (-1081 "RULE.spad" 1816023 1816047 1817773 1817778) (-1080 "RTVALUE.spad" 1815758 1815767 1816013 1816018) (-1079 "RSTRCAST.spad" 1815475 1815484 1815748 1815753) (-1078 "RSETGCD.spad" 1811853 1811873 1815465 1815470) (-1077 "RSETCAT.spad" 1801789 1801806 1811821 1811848) (-1076 "RSETCAT.spad" 1791745 1791764 1801779 1801784) (-1075 "RSDCMPK.spad" 1790197 1790217 1791735 1791740) (-1074 "RRCC.spad" 1788581 1788611 1790187 1790192) (-1073 "RRCC.spad" 1786963 1786995 1788571 1788576) (-1072 "RPTAST.spad" 1786665 1786674 1786953 1786958) (-1071 "RPOLCAT.spad" 1766025 1766040 1786533 1786660) (-1070 "RPOLCAT.spad" 1745099 1745116 1765609 1765614) (-1069 "ROUTINE.spad" 1740982 1740991 1743746 1743773) (-1068 "ROMAN.spad" 1740310 1740319 1740848 1740977) (-1067 "ROIRC.spad" 1739390 1739422 1740300 1740305) (-1066 "RNS.spad" 1738293 1738302 1739292 1739385) (-1065 "RNS.spad" 1737282 1737293 1738283 1738288) (-1064 "RNGBIND.spad" 1736442 1736456 1737237 1737242) (-1063 "RNG.spad" 1736177 1736186 1736432 1736437) (-1062 "RMODULE.spad" 1735942 1735953 1736167 1736172) (-1061 "RMCAT2.spad" 1735362 1735419 1735932 1735937) (-1060 "RMATRIX.spad" 1734186 1734205 1734529 1734568) (-1059 "RMATCAT.spad" 1729765 1729796 1734142 1734181) (-1058 "RMATCAT.spad" 1725234 1725267 1729613 1729618) (-1057 "RLINSET.spad" 1724628 1724639 1725224 1725229) (-1056 "RINTERP.spad" 1724516 1724536 1724618 1724623) (-1055 "RING.spad" 1723986 1723995 1724496 1724511) (-1054 "RING.spad" 1723464 1723475 1723976 1723981) (-1053 "RIDIST.spad" 1722856 1722865 1723454 1723459) (-1052 "RGCHAIN.spad" 1721439 1721455 1722341 1722368) (-1051 "RGBCSPC.spad" 1721220 1721232 1721429 1721434) (-1050 "RGBCMDL.spad" 1720750 1720762 1721210 1721215) (-1049 "RFFACTOR.spad" 1720212 1720223 1720740 1720745) (-1048 "RFFACT.spad" 1719947 1719959 1720202 1720207) (-1047 "RFDIST.spad" 1718943 1718952 1719937 1719942) (-1046 "RF.spad" 1716585 1716596 1718933 1718938) (-1045 "RETSOL.spad" 1716004 1716017 1716575 1716580) (-1044 "RETRACT.spad" 1715432 1715443 1715994 1715999) (-1043 "RETRACT.spad" 1714858 1714871 1715422 1715427) (-1042 "RETAST.spad" 1714670 1714679 1714848 1714853) (-1041 "RESULT.spad" 1712730 1712739 1713317 1713344) (-1040 "RESRING.spad" 1712077 1712124 1712668 1712725) (-1039 "RESLATC.spad" 1711401 1711412 1712067 1712072) (-1038 "REPSQ.spad" 1711132 1711143 1711391 1711396) (-1037 "REPDB.spad" 1710839 1710850 1711122 1711127) (-1036 "REP2.spad" 1700497 1700508 1710681 1710686) (-1035 "REP1.spad" 1694693 1694704 1700447 1700452) (-1034 "REP.spad" 1692247 1692256 1694683 1694688) (-1033 "REGSET.spad" 1690044 1690061 1691893 1691920) (-1032 "REF.spad" 1689379 1689390 1689999 1690004) (-1031 "REDORDER.spad" 1688585 1688602 1689369 1689374) (-1030 "RECLOS.spad" 1687368 1687388 1688072 1688165) (-1029 "REALSOLV.spad" 1686508 1686517 1687358 1687363) (-1028 "REAL0Q.spad" 1683806 1683821 1686498 1686503) (-1027 "REAL0.spad" 1680650 1680665 1683796 1683801) (-1026 "REAL.spad" 1680522 1680531 1680640 1680645) (-1025 "RDUCEAST.spad" 1680243 1680252 1680512 1680517) (-1024 "RDIV.spad" 1679898 1679923 1680233 1680238) (-1023 "RDIST.spad" 1679465 1679476 1679888 1679893) (-1022 "RDETRS.spad" 1678329 1678347 1679455 1679460) (-1021 "RDETR.spad" 1676468 1676486 1678319 1678324) (-1020 "RDEEFS.spad" 1675567 1675584 1676458 1676463) (-1019 "RDEEF.spad" 1674577 1674594 1675557 1675562) (-1018 "RCFIELD.spad" 1671763 1671772 1674479 1674572) (-1017 "RCFIELD.spad" 1669035 1669046 1671753 1671758) (-1016 "RCAGG.spad" 1666963 1666974 1669025 1669030) (-1015 "RCAGG.spad" 1664818 1664831 1666882 1666887) (-1014 "RATRET.spad" 1664178 1664189 1664808 1664813) (-1013 "RATFACT.spad" 1663870 1663882 1664168 1664173) (-1012 "RANDSRC.spad" 1663189 1663198 1663860 1663865) (-1011 "RADUTIL.spad" 1662945 1662954 1663179 1663184) (-1010 "RADIX.spad" 1659866 1659880 1661412 1661505) (-1009 "RADFF.spad" 1658279 1658316 1658398 1658554) (-1008 "RADCAT.spad" 1657874 1657883 1658269 1658274) (-1007 "RADCAT.spad" 1657467 1657478 1657864 1657869) (-1006 "QUEUE.spad" 1656815 1656826 1657074 1657101) (-1005 "QUATCT2.spad" 1656435 1656454 1656805 1656810) (-1004 "QUATCAT.spad" 1654605 1654616 1656365 1656430) (-1003 "QUATCAT.spad" 1652526 1652539 1654288 1654293) (-1002 "QUAT.spad" 1651107 1651118 1651450 1651515) (-1001 "QUAGG.spad" 1649934 1649945 1651075 1651102) (-1000 "QQUTAST.spad" 1649702 1649711 1649924 1649929) (-999 "QFORM.spad" 1649167 1649181 1649692 1649697) (-998 "QFCAT2.spad" 1648860 1648876 1649157 1649162) (-997 "QFCAT.spad" 1647563 1647573 1648762 1648855) (-996 "QFCAT.spad" 1645857 1645869 1647058 1647063) (-995 "QEQUAT.spad" 1645416 1645424 1645847 1645852) (-994 "QCMPACK.spad" 1640163 1640182 1645406 1645411) (-993 "QALGSET2.spad" 1638159 1638177 1640153 1640158) (-992 "QALGSET.spad" 1634240 1634272 1638073 1638078) (-991 "PWFFINTB.spad" 1631656 1631677 1634230 1634235) (-990 "PUSHVAR.spad" 1630995 1631014 1631646 1631651) (-989 "PTRANFN.spad" 1627123 1627133 1630985 1630990) (-988 "PTPACK.spad" 1624211 1624221 1627113 1627118) (-987 "PTFUNC2.spad" 1624034 1624048 1624201 1624206) (-986 "PTCAT.spad" 1623289 1623299 1624002 1624029) (-985 "PSQFR.spad" 1622596 1622620 1623279 1623284) (-984 "PSEUDLIN.spad" 1621482 1621492 1622586 1622591) (-983 "PSETPK.spad" 1606915 1606931 1621360 1621365) (-982 "PSETCAT.spad" 1600835 1600858 1606895 1606910) (-981 "PSETCAT.spad" 1594729 1594754 1600791 1600796) (-980 "PSCURVE.spad" 1593712 1593720 1594719 1594724) (-979 "PSCAT.spad" 1592495 1592524 1593610 1593707) (-978 "PSCAT.spad" 1591368 1591399 1592485 1592490) (-977 "PRTITION.spad" 1590329 1590337 1591358 1591363) (-976 "PRTDAST.spad" 1590048 1590056 1590319 1590324) (-975 "PRS.spad" 1579610 1579627 1590004 1590009) (-974 "PRQAGG.spad" 1579045 1579055 1579578 1579605) (-973 "PROPLOG.spad" 1578344 1578352 1579035 1579040) (-972 "PROPFRML.spad" 1576912 1576923 1578334 1578339) (-971 "PROPERTY.spad" 1576400 1576408 1576902 1576907) (-970 "PRODUCT.spad" 1574082 1574094 1574366 1574421) (-969 "PRINT.spad" 1573834 1573842 1574072 1574077) (-968 "PRIMES.spad" 1572087 1572097 1573824 1573829) (-967 "PRIMELT.spad" 1570168 1570182 1572077 1572082) (-966 "PRIMCAT.spad" 1569795 1569803 1570158 1570163) (-965 "PRIMARR2.spad" 1568562 1568574 1569785 1569790) (-964 "PRIMARR.spad" 1567567 1567577 1567745 1567772) (-963 "PREASSOC.spad" 1566949 1566961 1567557 1567562) (-962 "PR.spad" 1565341 1565353 1566040 1566167) (-961 "PPCURVE.spad" 1564478 1564486 1565331 1565336) (-960 "PORTNUM.spad" 1564253 1564261 1564468 1564473) (-959 "POLYROOT.spad" 1563102 1563124 1564209 1564214) (-958 "POLYLIFT.spad" 1562367 1562390 1563092 1563097) (-957 "POLYCATQ.spad" 1560485 1560507 1562357 1562362) (-956 "POLYCAT.spad" 1553955 1553976 1560353 1560480) (-955 "POLYCAT.spad" 1546763 1546786 1553163 1553168) (-954 "POLY2UP.spad" 1546215 1546229 1546753 1546758) (-953 "POLY2.spad" 1545812 1545824 1546205 1546210) (-952 "POLY.spad" 1543147 1543157 1543662 1543789) (-951 "POLUTIL.spad" 1542088 1542117 1543103 1543108) (-950 "POLTOPOL.spad" 1540836 1540851 1542078 1542083) (-949 "POINT.spad" 1539674 1539684 1539761 1539788) (-948 "PNTHEORY.spad" 1536376 1536384 1539664 1539669) (-947 "PMTOOLS.spad" 1535151 1535165 1536366 1536371) (-946 "PMSYM.spad" 1534700 1534710 1535141 1535146) (-945 "PMQFCAT.spad" 1534291 1534305 1534690 1534695) (-944 "PMPREDFS.spad" 1533745 1533767 1534281 1534286) (-943 "PMPRED.spad" 1533224 1533238 1533735 1533740) (-942 "PMPLCAT.spad" 1532304 1532322 1533156 1533161) (-941 "PMLSAGG.spad" 1531889 1531903 1532294 1532299) (-940 "PMKERNEL.spad" 1531468 1531480 1531879 1531884) (-939 "PMINS.spad" 1531048 1531058 1531458 1531463) (-938 "PMFS.spad" 1530625 1530643 1531038 1531043) (-937 "PMDOWN.spad" 1529915 1529929 1530615 1530620) (-936 "PMASSFS.spad" 1528882 1528898 1529905 1529910) (-935 "PMASS.spad" 1527892 1527900 1528872 1528877) (-934 "PLOTTOOL.spad" 1527672 1527680 1527882 1527887) (-933 "PLOT3D.spad" 1524136 1524144 1527662 1527667) (-932 "PLOT1.spad" 1523293 1523303 1524126 1524131) (-931 "PLOT.spad" 1518216 1518224 1523283 1523288) (-930 "PLEQN.spad" 1505506 1505533 1518206 1518211) (-929 "PINTERPA.spad" 1505290 1505306 1505496 1505501) (-928 "PINTERP.spad" 1504912 1504931 1505280 1505285) (-927 "PID.spad" 1503882 1503890 1504838 1504907) (-926 "PICOERCE.spad" 1503539 1503549 1503872 1503877) (-925 "PI.spad" 1503148 1503156 1503513 1503534) (-924 "PGROEB.spad" 1501749 1501763 1503138 1503143) (-923 "PGE.spad" 1493366 1493374 1501739 1501744) (-922 "PGCD.spad" 1492256 1492273 1493356 1493361) (-921 "PFRPAC.spad" 1491405 1491415 1492246 1492251) (-920 "PFR.spad" 1488068 1488078 1491307 1491400) (-919 "PFOTOOLS.spad" 1487326 1487342 1488058 1488063) (-918 "PFOQ.spad" 1486696 1486714 1487316 1487321) (-917 "PFO.spad" 1486115 1486142 1486686 1486691) (-916 "PFECAT.spad" 1483797 1483805 1486041 1486110) (-915 "PFECAT.spad" 1481507 1481517 1483753 1483758) (-914 "PFBRU.spad" 1479395 1479407 1481497 1481502) (-913 "PFBR.spad" 1476955 1476978 1479385 1479390) (-912 "PF.spad" 1476529 1476541 1476760 1476853) (-911 "PERMGRP.spad" 1471291 1471301 1476519 1476524) (-910 "PERMCAT.spad" 1469849 1469859 1471271 1471286) (-909 "PERMAN.spad" 1468381 1468395 1469839 1469844) (-908 "PERM.spad" 1464066 1464076 1468211 1468226) (-907 "PENDTREE.spad" 1463407 1463417 1463695 1463700) (-906 "PDRING.spad" 1461958 1461968 1463387 1463402) (-905 "PDRING.spad" 1460517 1460529 1461948 1461953) (-904 "PDEPROB.spad" 1459532 1459540 1460507 1460512) (-903 "PDEPACK.spad" 1453572 1453580 1459522 1459527) (-902 "PDECOMP.spad" 1453042 1453059 1453562 1453567) (-901 "PDECAT.spad" 1451398 1451406 1453032 1453037) (-900 "PCOMP.spad" 1451251 1451264 1451388 1451393) (-899 "PBWLB.spad" 1449839 1449856 1451241 1451246) (-898 "PATTERN2.spad" 1449577 1449589 1449829 1449834) (-897 "PATTERN1.spad" 1447913 1447929 1449567 1449572) (-896 "PATTERN.spad" 1442452 1442462 1447903 1447908) (-895 "PATRES2.spad" 1442124 1442138 1442442 1442447) (-894 "PATRES.spad" 1439699 1439711 1442114 1442119) (-893 "PATMATCH.spad" 1437896 1437927 1439407 1439412) (-892 "PATMAB.spad" 1437325 1437335 1437886 1437891) (-891 "PATLRES.spad" 1436411 1436425 1437315 1437320) (-890 "PATAB.spad" 1436175 1436185 1436401 1436406) (-889 "PARTPERM.spad" 1433575 1433583 1436165 1436170) (-888 "PARSURF.spad" 1433009 1433037 1433565 1433570) (-887 "PARSU2.spad" 1432806 1432822 1432999 1433004) (-886 "script-parser.spad" 1432326 1432334 1432796 1432801) (-885 "PARSCURV.spad" 1431760 1431788 1432316 1432321) (-884 "PARSC2.spad" 1431551 1431567 1431750 1431755) (-883 "PARPCURV.spad" 1431013 1431041 1431541 1431546) (-882 "PARPC2.spad" 1430804 1430820 1431003 1431008) (-881 "PARAMAST.spad" 1429932 1429940 1430794 1430799) (-880 "PAN2EXPR.spad" 1429344 1429352 1429922 1429927) (-879 "PALETTE.spad" 1428314 1428322 1429334 1429339) (-878 "PAIR.spad" 1427301 1427314 1427902 1427907) (-877 "PADICRC.spad" 1424635 1424653 1425806 1425899) (-876 "PADICRAT.spad" 1422650 1422662 1422871 1422964) (-875 "PADICCT.spad" 1421199 1421211 1422576 1422645) (-874 "PADIC.spad" 1420894 1420906 1421125 1421194) (-873 "PADEPAC.spad" 1419583 1419602 1420884 1420889) (-872 "PADE.spad" 1418335 1418351 1419573 1419578) (-871 "OWP.spad" 1417575 1417605 1418193 1418260) (-870 "OVERSET.spad" 1417148 1417156 1417565 1417570) (-869 "OVAR.spad" 1416929 1416952 1417138 1417143) (-868 "OUTFORM.spad" 1406321 1406329 1416919 1416924) (-867 "OUTBFILE.spad" 1405739 1405747 1406311 1406316) (-866 "OUTBCON.spad" 1404745 1404753 1405729 1405734) (-865 "OUTBCON.spad" 1403749 1403759 1404735 1404740) (-864 "OUT.spad" 1402835 1402843 1403739 1403744) (-863 "OSI.spad" 1402310 1402318 1402825 1402830) (-862 "OSGROUP.spad" 1402228 1402236 1402300 1402305) (-861 "ORTHPOL.spad" 1400713 1400723 1402145 1402150) (-860 "OREUP.spad" 1400166 1400194 1400393 1400432) (-859 "ORESUP.spad" 1399467 1399491 1399846 1399885) (-858 "OREPCTO.spad" 1397324 1397336 1399387 1399392) (-857 "OREPCAT.spad" 1391471 1391481 1397280 1397319) (-856 "OREPCAT.spad" 1385508 1385520 1391319 1391324) (-855 "ORDSET.spad" 1384680 1384688 1385498 1385503) (-854 "ORDSET.spad" 1383850 1383860 1384670 1384675) (-853 "ORDRING.spad" 1383240 1383248 1383830 1383845) (-852 "ORDRING.spad" 1382638 1382648 1383230 1383235) (-851 "ORDMON.spad" 1382493 1382501 1382628 1382633) (-850 "ORDFUNS.spad" 1381625 1381641 1382483 1382488) (-849 "ORDFIN.spad" 1381445 1381453 1381615 1381620) (-848 "ORDCOMP2.spad" 1380738 1380750 1381435 1381440) (-847 "ORDCOMP.spad" 1379203 1379213 1380285 1380314) (-846 "OPTPROB.spad" 1377841 1377849 1379193 1379198) (-845 "OPTPACK.spad" 1370250 1370258 1377831 1377836) (-844 "OPTCAT.spad" 1367929 1367937 1370240 1370245) (-843 "OPSIG.spad" 1367583 1367591 1367919 1367924) (-842 "OPQUERY.spad" 1367132 1367140 1367573 1367578) (-841 "OPERCAT.spad" 1366598 1366608 1367122 1367127) (-840 "OPERCAT.spad" 1366062 1366074 1366588 1366593) (-839 "OP.spad" 1365804 1365814 1365884 1365951) (-838 "ONECOMP2.spad" 1365228 1365240 1365794 1365799) (-837 "ONECOMP.spad" 1363973 1363983 1364775 1364804) (-836 "OMSERVER.spad" 1362979 1362987 1363963 1363968) (-835 "OMSAGG.spad" 1362767 1362777 1362935 1362974) (-834 "OMPKG.spad" 1361383 1361391 1362757 1362762) (-833 "OMLO.spad" 1360808 1360820 1361269 1361308) (-832 "OMEXPR.spad" 1360642 1360652 1360798 1360803) (-831 "OMERRK.spad" 1359676 1359684 1360632 1360637) (-830 "OMERR.spad" 1359221 1359229 1359666 1359671) (-829 "OMENC.spad" 1358565 1358573 1359211 1359216) (-828 "OMDEV.spad" 1352874 1352882 1358555 1358560) (-827 "OMCONN.spad" 1352283 1352291 1352864 1352869) (-826 "OM.spad" 1351256 1351264 1352273 1352278) (-825 "OINTDOM.spad" 1351019 1351027 1351182 1351251) (-824 "OFMONOID.spad" 1349142 1349152 1350975 1350980) (-823 "ODVAR.spad" 1348403 1348413 1349132 1349137) (-822 "ODR.spad" 1348047 1348073 1348215 1348364) (-821 "ODPOL.spad" 1345429 1345439 1345769 1345896) (-820 "ODP.spad" 1335276 1335296 1335649 1335780) (-819 "ODETOOLS.spad" 1333925 1333944 1335266 1335271) (-818 "ODESYS.spad" 1331619 1331636 1333915 1333920) (-817 "ODERTRIC.spad" 1327628 1327645 1331576 1331581) (-816 "ODERED.spad" 1327027 1327051 1327618 1327623) (-815 "ODERAT.spad" 1324644 1324661 1327017 1327022) (-814 "ODEPRRIC.spad" 1321681 1321703 1324634 1324639) (-813 "ODEPROB.spad" 1320938 1320946 1321671 1321676) (-812 "ODEPRIM.spad" 1318272 1318294 1320928 1320933) (-811 "ODEPAL.spad" 1317658 1317682 1318262 1318267) (-810 "ODEPACK.spad" 1304324 1304332 1317648 1317653) (-809 "ODEINT.spad" 1303759 1303775 1304314 1304319) (-808 "ODEIFTBL.spad" 1301154 1301162 1303749 1303754) (-807 "ODEEF.spad" 1296649 1296665 1301144 1301149) (-806 "ODECONST.spad" 1296186 1296204 1296639 1296644) (-805 "ODECAT.spad" 1294784 1294792 1296176 1296181) (-804 "OCTCT2.spad" 1294430 1294451 1294774 1294779) (-803 "OCT.spad" 1292566 1292576 1293280 1293319) (-802 "OCAMON.spad" 1292414 1292422 1292556 1292561) (-801 "OC.spad" 1290210 1290220 1292370 1292409) (-800 "OC.spad" 1287731 1287743 1289893 1289898) (-799 "OASGP.spad" 1287546 1287554 1287721 1287726) (-798 "OAMONS.spad" 1287068 1287076 1287536 1287541) (-797 "OAMON.spad" 1286929 1286937 1287058 1287063) (-796 "OAGROUP.spad" 1286791 1286799 1286919 1286924) (-795 "NUMTUBE.spad" 1286382 1286398 1286781 1286786) (-794 "NUMQUAD.spad" 1274358 1274366 1286372 1286377) (-793 "NUMODE.spad" 1265712 1265720 1274348 1274353) (-792 "NUMINT.spad" 1263278 1263286 1265702 1265707) (-791 "NUMFMT.spad" 1262118 1262126 1263268 1263273) (-790 "NUMERIC.spad" 1254232 1254242 1261923 1261928) (-789 "NTSCAT.spad" 1252740 1252756 1254200 1254227) (-788 "NTPOLFN.spad" 1252291 1252301 1252657 1252662) (-787 "NSUP2.spad" 1251683 1251695 1252281 1252286) (-786 "NSUP.spad" 1244729 1244739 1249269 1249422) (-785 "NSMP.spad" 1240960 1240979 1241268 1241395) (-784 "NREP.spad" 1239338 1239352 1240950 1240955) (-783 "NPCOEF.spad" 1238584 1238604 1239328 1239333) (-782 "NORMRETR.spad" 1238182 1238221 1238574 1238579) (-781 "NORMPK.spad" 1236084 1236103 1238172 1238177) (-780 "NORMMA.spad" 1235772 1235798 1236074 1236079) (-779 "NONE1.spad" 1235448 1235458 1235762 1235767) (-778 "NONE.spad" 1235189 1235197 1235438 1235443) (-777 "NODE1.spad" 1234676 1234692 1235179 1235184) (-776 "NNI.spad" 1233571 1233579 1234650 1234671) (-775 "NLINSOL.spad" 1232197 1232207 1233561 1233566) (-774 "NIPROB.spad" 1230738 1230746 1232187 1232192) (-773 "NFINTBAS.spad" 1228298 1228315 1230728 1230733) (-772 "NETCLT.spad" 1228272 1228283 1228288 1228293) (-771 "NCODIV.spad" 1226488 1226504 1228262 1228267) (-770 "NCNTFRAC.spad" 1226130 1226144 1226478 1226483) (-769 "NCEP.spad" 1224296 1224310 1226120 1226125) (-768 "NASRING.spad" 1223892 1223900 1224286 1224291) (-767 "NASRING.spad" 1223486 1223496 1223882 1223887) (-766 "NARNG.spad" 1222838 1222846 1223476 1223481) (-765 "NARNG.spad" 1222188 1222198 1222828 1222833) (-764 "NAGSP.spad" 1221265 1221273 1222178 1222183) (-763 "NAGS.spad" 1210926 1210934 1221255 1221260) (-762 "NAGF07.spad" 1209357 1209365 1210916 1210921) (-761 "NAGF04.spad" 1203759 1203767 1209347 1209352) (-760 "NAGF02.spad" 1197828 1197836 1203749 1203754) (-759 "NAGF01.spad" 1193589 1193597 1197818 1197823) (-758 "NAGE04.spad" 1187289 1187297 1193579 1193584) (-757 "NAGE02.spad" 1177949 1177957 1187279 1187284) (-756 "NAGE01.spad" 1173951 1173959 1177939 1177944) (-755 "NAGD03.spad" 1171955 1171963 1173941 1173946) (-754 "NAGD02.spad" 1164702 1164710 1171945 1171950) (-753 "NAGD01.spad" 1158995 1159003 1164692 1164697) (-752 "NAGC06.spad" 1154870 1154878 1158985 1158990) (-751 "NAGC05.spad" 1153371 1153379 1154860 1154865) (-750 "NAGC02.spad" 1152638 1152646 1153361 1153366) (-749 "NAALG.spad" 1152179 1152189 1152606 1152633) (-748 "NAALG.spad" 1151740 1151752 1152169 1152174) (-747 "MULTSQFR.spad" 1148698 1148715 1151730 1151735) (-746 "MULTFACT.spad" 1148081 1148098 1148688 1148693) (-745 "MTSCAT.spad" 1146175 1146196 1147979 1148076) (-744 "MTHING.spad" 1145834 1145844 1146165 1146170) (-743 "MSYSCMD.spad" 1145268 1145276 1145824 1145829) (-742 "MSETAGG.spad" 1145113 1145123 1145236 1145263) (-741 "MSET.spad" 1143071 1143081 1144819 1144858) (-740 "MRING.spad" 1140048 1140060 1142779 1142846) (-739 "MRF2.spad" 1139618 1139632 1140038 1140043) (-738 "MRATFAC.spad" 1139164 1139181 1139608 1139613) (-737 "MPRFF.spad" 1137204 1137223 1139154 1139159) (-736 "MPOLY.spad" 1134675 1134690 1135034 1135161) (-735 "MPCPF.spad" 1133939 1133958 1134665 1134670) (-734 "MPC3.spad" 1133756 1133796 1133929 1133934) (-733 "MPC2.spad" 1133402 1133435 1133746 1133751) (-732 "MONOTOOL.spad" 1131753 1131770 1133392 1133397) (-731 "MONOID.spad" 1131072 1131080 1131743 1131748) (-730 "MONOID.spad" 1130389 1130399 1131062 1131067) (-729 "MONOGEN.spad" 1129137 1129150 1130249 1130384) (-728 "MONOGEN.spad" 1127907 1127922 1129021 1129026) (-727 "MONADWU.spad" 1125937 1125945 1127897 1127902) (-726 "MONADWU.spad" 1123965 1123975 1125927 1125932) (-725 "MONAD.spad" 1123125 1123133 1123955 1123960) (-724 "MONAD.spad" 1122283 1122293 1123115 1123120) (-723 "MOEBIUS.spad" 1121019 1121033 1122263 1122278) (-722 "MODULE.spad" 1120889 1120899 1120987 1121014) (-721 "MODULE.spad" 1120779 1120791 1120879 1120884) (-720 "MODRING.spad" 1120114 1120153 1120759 1120774) (-719 "MODOP.spad" 1118779 1118791 1119936 1120003) (-718 "MODMONOM.spad" 1118510 1118528 1118769 1118774) (-717 "MODMON.spad" 1115305 1115321 1116024 1116177) (-716 "MODFIELD.spad" 1114667 1114706 1115207 1115300) (-715 "MMLFORM.spad" 1113527 1113535 1114657 1114662) (-714 "MMAP.spad" 1113269 1113303 1113517 1113522) (-713 "MLO.spad" 1111728 1111738 1113225 1113264) (-712 "MLIFT.spad" 1110340 1110357 1111718 1111723) (-711 "MKUCFUNC.spad" 1109875 1109893 1110330 1110335) (-710 "MKRECORD.spad" 1109479 1109492 1109865 1109870) (-709 "MKFUNC.spad" 1108886 1108896 1109469 1109474) (-708 "MKFLCFN.spad" 1107854 1107864 1108876 1108881) (-707 "MKBCFUNC.spad" 1107349 1107367 1107844 1107849) (-706 "MINT.spad" 1106788 1106796 1107251 1107344) (-705 "MHROWRED.spad" 1105299 1105309 1106778 1106783) (-704 "MFLOAT.spad" 1103819 1103827 1105189 1105294) (-703 "MFINFACT.spad" 1103219 1103241 1103809 1103814) (-702 "MESH.spad" 1101006 1101014 1103209 1103214) (-701 "MDDFACT.spad" 1099217 1099227 1100996 1101001) (-700 "MDAGG.spad" 1098508 1098518 1099197 1099212) (-699 "MCMPLX.spad" 1094519 1094527 1095133 1095334) (-698 "MCDEN.spad" 1093729 1093741 1094509 1094514) (-697 "MCALCFN.spad" 1090851 1090877 1093719 1093724) (-696 "MAYBE.spad" 1090135 1090146 1090841 1090846) (-695 "MATSTOR.spad" 1087443 1087453 1090125 1090130) (-694 "MATRIX.spad" 1086147 1086157 1086631 1086658) (-693 "MATLIN.spad" 1083491 1083515 1086031 1086036) (-692 "MATCAT2.spad" 1082773 1082821 1083481 1083486) (-691 "MATCAT.spad" 1074502 1074524 1082741 1082768) (-690 "MATCAT.spad" 1066103 1066127 1074344 1074349) (-689 "MAPPKG3.spad" 1065018 1065032 1066093 1066098) (-688 "MAPPKG2.spad" 1064356 1064368 1065008 1065013) (-687 "MAPPKG1.spad" 1063184 1063194 1064346 1064351) (-686 "MAPPAST.spad" 1062499 1062507 1063174 1063179) (-685 "MAPHACK3.spad" 1062311 1062325 1062489 1062494) (-684 "MAPHACK2.spad" 1062080 1062092 1062301 1062306) (-683 "MAPHACK1.spad" 1061724 1061734 1062070 1062075) (-682 "MAGMA.spad" 1059514 1059531 1061714 1061719) (-681 "MACROAST.spad" 1059093 1059101 1059504 1059509) (-680 "M3D.spad" 1056813 1056823 1058471 1058476) (-679 "LZSTAGG.spad" 1054051 1054061 1056803 1056808) (-678 "LZSTAGG.spad" 1051287 1051299 1054041 1054046) (-677 "LWORD.spad" 1047992 1048009 1051277 1051282) (-676 "LSTAST.spad" 1047776 1047784 1047982 1047987) (-675 "LSQM.spad" 1046003 1046017 1046397 1046448) (-674 "LSPP.spad" 1045538 1045555 1045993 1045998) (-673 "LSMP1.spad" 1043373 1043387 1045528 1045533) (-672 "LSMP.spad" 1042230 1042258 1043363 1043368) (-671 "LSAGG.spad" 1041899 1041909 1042198 1042225) (-670 "LSAGG.spad" 1041588 1041600 1041889 1041894) (-669 "LPOLY.spad" 1040542 1040561 1041444 1041513) (-668 "LPEFRAC.spad" 1039813 1039823 1040532 1040537) (-667 "LOGIC.spad" 1039415 1039423 1039803 1039808) (-666 "LOGIC.spad" 1039015 1039025 1039405 1039410) (-665 "LODOOPS.spad" 1037945 1037957 1039005 1039010) (-664 "LODOF.spad" 1036991 1037008 1037902 1037907) (-663 "LODOCAT.spad" 1035657 1035667 1036947 1036986) (-662 "LODOCAT.spad" 1034321 1034333 1035613 1035618) (-661 "LODO2.spad" 1033594 1033606 1034001 1034040) (-660 "LODO1.spad" 1032994 1033004 1033274 1033313) (-659 "LODO.spad" 1032378 1032394 1032674 1032713) (-658 "LODEEF.spad" 1031180 1031198 1032368 1032373) (-657 "LO.spad" 1030581 1030595 1031114 1031141) (-656 "LNAGG.spad" 1026413 1026423 1030571 1030576) (-655 "LNAGG.spad" 1022209 1022221 1026369 1026374) (-654 "LMOPS.spad" 1018977 1018994 1022199 1022204) (-653 "LMODULE.spad" 1018745 1018755 1018967 1018972) (-652 "LMDICT.spad" 1018032 1018042 1018296 1018323) (-651 "LLINSET.spad" 1017429 1017439 1018022 1018027) (-650 "LITERAL.spad" 1017335 1017346 1017419 1017424) (-649 "LIST3.spad" 1016646 1016660 1017325 1017330) (-648 "LIST2MAP.spad" 1013549 1013561 1016636 1016641) (-647 "LIST2.spad" 1012251 1012263 1013539 1013544) (-646 "LIST.spad" 1009986 1009996 1011398 1011425) (-645 "LINSET.spad" 1009608 1009618 1009976 1009981) (-644 "LINEXP.spad" 1009042 1009052 1009588 1009603) (-643 "LINDEP.spad" 1007851 1007863 1008954 1008959) (-642 "LIMITRF.spad" 1005798 1005808 1007841 1007846) (-641 "LIMITPS.spad" 1004708 1004721 1005788 1005793) (-640 "LIECAT.spad" 1004184 1004194 1004634 1004703) (-639 "LIECAT.spad" 1003688 1003700 1004140 1004145) (-638 "LIE.spad" 1001704 1001716 1002978 1003123) (-637 "LIB.spad" 999754 999762 1000363 1000378) (-636 "LGROBP.spad" 997107 997126 999744 999749) (-635 "LFCAT.spad" 996166 996174 997097 997102) (-634 "LF.spad" 995121 995137 996156 996161) (-633 "LEXTRIPK.spad" 990624 990639 995111 995116) (-632 "LEXP.spad" 988627 988654 990604 990619) (-631 "LETAST.spad" 988326 988334 988617 988622) (-630 "LEADCDET.spad" 986724 986741 988316 988321) (-629 "LAZM3PK.spad" 985428 985450 986714 986719) (-628 "LAUPOL.spad" 984121 984134 985021 985090) (-627 "LAPLACE.spad" 983704 983720 984111 984116) (-626 "LALG.spad" 983480 983490 983684 983699) (-625 "LALG.spad" 983264 983276 983470 983475) (-624 "LA.spad" 982704 982718 983186 983225) (-623 "KVTFROM.spad" 982439 982449 982694 982699) (-622 "KTVLOGIC.spad" 981951 981959 982429 982434) (-621 "KRCFROM.spad" 981689 981699 981941 981946) (-620 "KOVACIC.spad" 980412 980429 981679 981684) (-619 "KONVERT.spad" 980134 980144 980402 980407) (-618 "KOERCE.spad" 979871 979881 980124 980129) (-617 "KERNEL2.spad" 979574 979586 979861 979866) (-616 "KERNEL.spad" 978229 978239 979358 979363) (-615 "KDAGG.spad" 977338 977360 978209 978224) (-614 "KDAGG.spad" 976455 976479 977328 977333) (-613 "KAFILE.spad" 975418 975434 975653 975680) (-612 "JORDAN.spad" 973247 973259 974708 974853) (-611 "JOINAST.spad" 972941 972949 973237 973242) (-610 "JAVACODE.spad" 972807 972815 972931 972936) (-609 "IXAGG.spad" 970940 970964 972797 972802) (-608 "IXAGG.spad" 968928 968954 970787 970792) (-607 "IVECTOR.spad" 967698 967713 967853 967880) (-606 "ITUPLE.spad" 966859 966869 967688 967693) (-605 "ITRIGMNP.spad" 965698 965717 966849 966854) (-604 "ITFUN3.spad" 965204 965218 965688 965693) (-603 "ITFUN2.spad" 964948 964960 965194 965199) (-602 "ITFORM.spad" 964303 964311 964938 964943) (-601 "ITAYLOR.spad" 962297 962312 964167 964264) (-600 "ISUPS.spad" 954734 954749 961271 961368) (-599 "ISUMP.spad" 954235 954251 954724 954729) (-598 "ISTRING.spad" 953323 953336 953404 953431) (-597 "ISAST.spad" 953042 953050 953313 953318) (-596 "IRURPK.spad" 951759 951778 953032 953037) (-595 "IRSN.spad" 949763 949771 951749 951754) (-594 "IRRF2F.spad" 948248 948258 949719 949724) (-593 "IRREDFFX.spad" 947849 947860 948238 948243) (-592 "IROOT.spad" 946188 946198 947839 947844) (-591 "IRFORM.spad" 945512 945520 946178 946183) (-590 "IR2F.spad" 944718 944734 945502 945507) (-589 "IR2.spad" 943746 943762 944708 944713) (-588 "IR.spad" 941547 941561 943601 943628) (-587 "IPRNTPK.spad" 941307 941315 941537 941542) (-586 "IPF.spad" 940872 940884 941112 941205) (-585 "IPADIC.spad" 940633 940659 940798 940867) (-584 "IP4ADDR.spad" 940190 940198 940623 940628) (-583 "IOMODE.spad" 939811 939819 940180 940185) (-582 "IOBFILE.spad" 939172 939180 939801 939806) (-581 "IOBCON.spad" 939037 939045 939162 939167) (-580 "INVLAPLA.spad" 938686 938702 939027 939032) (-579 "INTTR.spad" 932080 932097 938676 938681) (-578 "INTTOOLS.spad" 929835 929851 931654 931659) (-577 "INTSLPE.spad" 929155 929163 929825 929830) (-576 "INTRVL.spad" 928721 928731 929069 929150) (-575 "INTRF.spad" 927145 927159 928711 928716) (-574 "INTRET.spad" 926577 926587 927135 927140) (-573 "INTRAT.spad" 925304 925321 926567 926572) (-572 "INTPM.spad" 923689 923705 924947 924952) (-571 "INTPAF.spad" 921560 921578 923621 923626) (-570 "INTPACK.spad" 911934 911942 921550 921555) (-569 "INTHERTR.spad" 911208 911225 911924 911929) (-568 "INTHERAL.spad" 910878 910902 911198 911203) (-567 "INTHEORY.spad" 907317 907325 910868 910873) (-566 "INTG0.spad" 901068 901086 907249 907254) (-565 "INTFTBL.spad" 896522 896530 901058 901063) (-564 "INTFACT.spad" 895581 895591 896512 896517) (-563 "INTEF.spad" 893968 893984 895571 895576) (-562 "INTDOM.spad" 892591 892599 893894 893963) (-561 "INTDOM.spad" 891276 891286 892581 892586) (-560 "INTCAT.spad" 889535 889545 891190 891271) (-559 "INTBIT.spad" 889042 889050 889525 889530) (-558 "INTALG.spad" 888230 888257 889032 889037) (-557 "INTAF.spad" 887730 887746 888220 888225) (-556 "INTABL.spad" 886248 886279 886411 886438) (-555 "INT8.spad" 886128 886136 886238 886243) (-554 "INT64.spad" 886007 886015 886118 886123) (-553 "INT32.spad" 885886 885894 885997 886002) (-552 "INT16.spad" 885765 885773 885876 885881) (-551 "INT.spad" 885213 885221 885619 885760) (-550 "INS.spad" 882716 882724 885115 885208) (-549 "INS.spad" 880305 880315 882706 882711) (-548 "INPSIGN.spad" 879775 879788 880295 880300) (-547 "INPRODPF.spad" 878871 878890 879765 879770) (-546 "INPRODFF.spad" 877959 877983 878861 878866) (-545 "INNMFACT.spad" 876934 876951 877949 877954) (-544 "INMODGCD.spad" 876422 876452 876924 876929) (-543 "INFSP.spad" 874719 874741 876412 876417) (-542 "INFPROD0.spad" 873799 873818 874709 874714) (-541 "INFORM1.spad" 873424 873434 873789 873794) (-540 "INFORM.spad" 870623 870631 873414 873419) (-539 "INFINITY.spad" 870175 870183 870613 870618) (-538 "INETCLTS.spad" 870152 870160 870165 870170) (-537 "INEP.spad" 868690 868712 870142 870147) (-536 "INDE.spad" 868419 868436 868680 868685) (-535 "INCRMAPS.spad" 867840 867850 868409 868414) (-534 "INBFILE.spad" 866912 866920 867830 867835) (-533 "INBFF.spad" 862706 862717 866902 866907) (-532 "INBCON.spad" 860996 861004 862696 862701) (-531 "INBCON.spad" 859284 859294 860986 860991) (-530 "INAST.spad" 858945 858953 859274 859279) (-529 "IMPTAST.spad" 858653 858661 858935 858940) (-528 "IMATRIX.spad" 857598 857624 858110 858137) (-527 "IMATQF.spad" 856692 856736 857554 857559) (-526 "IMATLIN.spad" 855297 855321 856648 856653) (-525 "ILIST.spad" 853955 853970 854480 854507) (-524 "IIARRAY2.spad" 853343 853381 853562 853589) (-523 "IFF.spad" 852753 852769 853024 853117) (-522 "IFAST.spad" 852367 852375 852743 852748) (-521 "IFARRAY.spad" 849860 849875 851550 851577) (-520 "IFAMON.spad" 849722 849739 849816 849821) (-519 "IEVALAB.spad" 849127 849139 849712 849717) (-518 "IEVALAB.spad" 848530 848544 849117 849122) (-517 "IDPOAMS.spad" 848286 848298 848520 848525) (-516 "IDPOAM.spad" 848006 848018 848276 848281) (-515 "IDPO.spad" 847804 847816 847996 848001) (-514 "IDPC.spad" 846742 846754 847794 847799) (-513 "IDPAM.spad" 846487 846499 846732 846737) (-512 "IDPAG.spad" 846234 846246 846477 846482) (-511 "IDENT.spad" 845884 845892 846224 846229) (-510 "IDECOMP.spad" 843123 843141 845874 845879) (-509 "IDEAL.spad" 838072 838111 843058 843063) (-508 "ICDEN.spad" 837261 837277 838062 838067) (-507 "ICARD.spad" 836452 836460 837251 837256) (-506 "IBPTOOLS.spad" 835059 835076 836442 836447) (-505 "IBITS.spad" 834262 834275 834695 834722) (-504 "IBATOOL.spad" 831239 831258 834252 834257) (-503 "IBACHIN.spad" 829746 829761 831229 831234) (-502 "IARRAY2.spad" 828734 828760 829353 829380) (-501 "IARRAY1.spad" 827779 827794 827917 827944) (-500 "IAN.spad" 826002 826010 827595 827688) (-499 "IALGFACT.spad" 825605 825638 825992 825997) (-498 "HYPCAT.spad" 825029 825037 825595 825600) (-497 "HYPCAT.spad" 824451 824461 825019 825024) (-496 "HOSTNAME.spad" 824259 824267 824441 824446) (-495 "HOMOTOP.spad" 824002 824012 824249 824254) (-494 "HOAGG.spad" 821284 821294 823992 823997) (-493 "HOAGG.spad" 818341 818353 821051 821056) (-492 "HEXADEC.spad" 816443 816451 816808 816901) (-491 "HEUGCD.spad" 815478 815489 816433 816438) (-490 "HELLFDIV.spad" 815068 815092 815468 815473) (-489 "HEAP.spad" 814460 814470 814675 814702) (-488 "HEADAST.spad" 813993 814001 814450 814455) (-487 "HDP.spad" 803836 803852 804213 804344) (-486 "HDMP.spad" 801050 801065 801666 801793) (-485 "HB.spad" 799301 799309 801040 801045) (-484 "HASHTBL.spad" 797771 797802 797982 798009) (-483 "HASAST.spad" 797487 797495 797761 797766) (-482 "HACKPI.spad" 796978 796986 797389 797482) (-481 "GTSET.spad" 795917 795933 796624 796651) (-480 "GSTBL.spad" 794436 794471 794610 794625) (-479 "GSERIES.spad" 791607 791634 792568 792717) (-478 "GROUP.spad" 790880 790888 791587 791602) (-477 "GROUP.spad" 790161 790171 790870 790875) (-476 "GROEBSOL.spad" 788655 788676 790151 790156) (-475 "GRMOD.spad" 787226 787238 788645 788650) (-474 "GRMOD.spad" 785795 785809 787216 787221) (-473 "GRIMAGE.spad" 778684 778692 785785 785790) (-472 "GRDEF.spad" 777063 777071 778674 778679) (-471 "GRAY.spad" 775526 775534 777053 777058) (-470 "GRALG.spad" 774603 774615 775516 775521) (-469 "GRALG.spad" 773678 773692 774593 774598) (-468 "GPOLSET.spad" 773132 773155 773360 773387) (-467 "GOSPER.spad" 772401 772419 773122 773127) (-466 "GMODPOL.spad" 771549 771576 772369 772396) (-465 "GHENSEL.spad" 770632 770646 771539 771544) (-464 "GENUPS.spad" 766925 766938 770622 770627) (-463 "GENUFACT.spad" 766502 766512 766915 766920) (-462 "GENPGCD.spad" 766088 766105 766492 766497) (-461 "GENMFACT.spad" 765540 765559 766078 766083) (-460 "GENEEZ.spad" 763491 763504 765530 765535) (-459 "GDMP.spad" 760547 760564 761321 761448) (-458 "GCNAALG.spad" 754470 754497 760341 760408) (-457 "GCDDOM.spad" 753646 753654 754396 754465) (-456 "GCDDOM.spad" 752884 752894 753636 753641) (-455 "GBINTERN.spad" 748904 748942 752874 752879) (-454 "GBF.spad" 744671 744709 748894 748899) (-453 "GBEUCLID.spad" 742553 742591 744661 744666) (-452 "GB.spad" 740079 740117 742509 742514) (-451 "GAUSSFAC.spad" 739392 739400 740069 740074) (-450 "GALUTIL.spad" 737718 737728 739348 739353) (-449 "GALPOLYU.spad" 736172 736185 737708 737713) (-448 "GALFACTU.spad" 734345 734364 736162 736167) (-447 "GALFACT.spad" 724534 724545 734335 734340) (-446 "FVFUN.spad" 721557 721565 724524 724529) (-445 "FVC.spad" 720609 720617 721547 721552) (-444 "FUNDESC.spad" 720287 720295 720599 720604) (-443 "FUNCTION.spad" 720136 720148 720277 720282) (-442 "FTEM.spad" 719301 719309 720126 720131) (-441 "FT.spad" 717601 717609 719291 719296) (-440 "FSUPFACT.spad" 716501 716520 717537 717542) (-439 "FST.spad" 714587 714595 716491 716496) (-438 "FSRED.spad" 714067 714083 714577 714582) (-437 "FSPRMELT.spad" 712949 712965 714024 714029) (-436 "FSPECF.spad" 711040 711056 712939 712944) (-435 "FSINT.spad" 710700 710716 711030 711035) (-434 "FSERIES.spad" 709891 709903 710520 710619) (-433 "FSCINT.spad" 709208 709224 709881 709886) (-432 "FSAGG2.spad" 707951 707967 709198 709203) (-431 "FSAGG.spad" 707068 707078 707907 707946) (-430 "FSAGG.spad" 706147 706159 706988 706993) (-429 "FS2UPS.spad" 700638 700672 706137 706142) (-428 "FS2EXPXP.spad" 699763 699786 700628 700633) (-427 "FS2.spad" 699410 699426 699753 699758) (-426 "FS.spad" 693678 693688 699185 699405) (-425 "FS.spad" 687724 687736 693233 693238) (-424 "FRUTIL.spad" 686678 686688 687714 687719) (-423 "FRNAALG.spad" 681797 681807 686620 686673) (-422 "FRNAALG.spad" 676928 676940 681753 681758) (-421 "FRNAAF2.spad" 676384 676402 676918 676923) (-420 "FRMOD.spad" 675794 675824 676315 676320) (-419 "FRIDEAL2.spad" 675398 675430 675784 675789) (-418 "FRIDEAL.spad" 674623 674644 675378 675393) (-417 "FRETRCT.spad" 674134 674144 674613 674618) (-416 "FRETRCT.spad" 673511 673523 673992 673997) (-415 "FRAMALG.spad" 671859 671872 673467 673506) (-414 "FRAMALG.spad" 670239 670254 671849 671854) (-413 "FRAC2.spad" 669844 669856 670229 670234) (-412 "FRAC.spad" 666943 666953 667346 667519) (-411 "FR2.spad" 666279 666291 666933 666938) (-410 "FR.spad" 660022 660032 665303 665372) (-409 "FPS.spad" 656837 656845 659912 660017) (-408 "FPS.spad" 653680 653690 656757 656762) (-407 "FPC.spad" 652726 652734 653582 653675) (-406 "FPC.spad" 651858 651868 652716 652721) (-405 "FPATMAB.spad" 651620 651630 651848 651853) (-404 "FPARFRAC.spad" 650107 650124 651610 651615) (-403 "FORTRAN.spad" 648613 648656 650097 650102) (-402 "FORTFN.spad" 645783 645791 648603 648608) (-401 "FORTCAT.spad" 645467 645475 645773 645778) (-400 "FORT.spad" 644416 644424 645457 645462) (-399 "FORMULA1.spad" 643895 643905 644406 644411) (-398 "FORMULA.spad" 641369 641377 643885 643890) (-397 "FORDER.spad" 641060 641084 641359 641364) (-396 "FOP.spad" 640261 640269 641050 641055) (-395 "FNLA.spad" 639685 639707 640229 640256) (-394 "FNCAT.spad" 638280 638288 639675 639680) (-393 "FNAME.spad" 638172 638180 638270 638275) (-392 "FMTC.spad" 637970 637978 638098 638167) (-391 "FMONOID.spad" 637635 637645 637926 637931) (-390 "FMONCAT.spad" 634788 634798 637625 637630) (-389 "FMFUN.spad" 631818 631826 634778 634783) (-388 "FMCAT.spad" 629486 629504 631786 631813) (-387 "FMC.spad" 628538 628546 629476 629481) (-386 "FM1.spad" 627895 627907 628472 628499) (-385 "FM.spad" 627590 627602 627829 627856) (-384 "FLOATRP.spad" 625325 625339 627580 627585) (-383 "FLOATCP.spad" 622756 622770 625315 625320) (-382 "FLOAT.spad" 616070 616078 622622 622751) (-381 "FLINEXP.spad" 615782 615792 616050 616065) (-380 "FLINEXP.spad" 615448 615460 615718 615723) (-379 "FLASORT.spad" 614774 614786 615438 615443) (-378 "FLALG.spad" 612420 612439 614700 614769) (-377 "FLAGG2.spad" 611145 611161 612410 612415) (-376 "FLAGG.spad" 608187 608197 611125 611140) (-375 "FLAGG.spad" 605130 605142 608070 608075) (-374 "FINRALG.spad" 603191 603204 605086 605125) (-373 "FINRALG.spad" 601178 601193 603075 603080) (-372 "FINITE.spad" 600330 600338 601168 601173) (-371 "FINAALG.spad" 589451 589461 600272 600325) (-370 "FINAALG.spad" 578584 578596 589407 589412) (-369 "FILECAT.spad" 577110 577127 578574 578579) (-368 "FILE.spad" 576693 576703 577100 577105) (-367 "FIELD.spad" 576099 576107 576595 576688) (-366 "FIELD.spad" 575591 575601 576089 576094) (-365 "FGROUP.spad" 574238 574248 575571 575586) (-364 "FGLMICPK.spad" 573025 573040 574228 574233) (-363 "FFX.spad" 572400 572415 572741 572834) (-362 "FFSLPE.spad" 571903 571924 572390 572395) (-361 "FFPOLY2.spad" 570963 570980 571893 571898) (-360 "FFPOLY.spad" 562225 562236 570953 570958) (-359 "FFP.spad" 561622 561642 561941 562034) (-358 "FFNBX.spad" 560134 560154 561338 561431) (-357 "FFNBP.spad" 558647 558664 559850 559943) (-356 "FFNB.spad" 557112 557133 558328 558421) (-355 "FFINTBAS.spad" 554626 554645 557102 557107) (-354 "FFIELDC.spad" 552203 552211 554528 554621) (-353 "FFIELDC.spad" 549866 549876 552193 552198) (-352 "FFHOM.spad" 548614 548631 549856 549861) (-351 "FFF.spad" 546049 546060 548604 548609) (-350 "FFCGX.spad" 544896 544916 545765 545858) (-349 "FFCGP.spad" 543785 543805 544612 544705) (-348 "FFCG.spad" 542577 542598 543466 543559) (-347 "FFCAT2.spad" 542324 542364 542567 542572) (-346 "FFCAT.spad" 535497 535519 542163 542319) (-345 "FFCAT.spad" 528749 528773 535417 535422) (-344 "FF.spad" 528197 528213 528430 528523) (-343 "FEXPR.spad" 519914 519960 527953 527992) (-342 "FEVALAB.spad" 519622 519632 519904 519909) (-341 "FEVALAB.spad" 519115 519127 519399 519404) (-340 "FDIVCAT.spad" 517179 517203 519105 519110) (-339 "FDIVCAT.spad" 515241 515267 517169 517174) (-338 "FDIV2.spad" 514897 514937 515231 515236) (-337 "FDIV.spad" 514339 514363 514887 514892) (-336 "FCTRDATA.spad" 513347 513355 514329 514334) (-335 "FCPAK1.spad" 511914 511922 513337 513342) (-334 "FCOMP.spad" 511293 511303 511904 511909) (-333 "FC.spad" 501300 501308 511283 511288) (-332 "FAXF.spad" 494271 494285 501202 501295) (-331 "FAXF.spad" 487294 487310 494227 494232) (-330 "FARRAY.spad" 485444 485454 486477 486504) (-329 "FAMR.spad" 483580 483592 485342 485439) (-328 "FAMR.spad" 481700 481714 483464 483469) (-327 "FAMONOID.spad" 481368 481378 481654 481659) (-326 "FAMONC.spad" 479664 479676 481358 481363) (-325 "FAGROUP.spad" 479288 479298 479560 479587) (-324 "FACUTIL.spad" 477492 477509 479278 479283) (-323 "FACTFUNC.spad" 476686 476696 477482 477487) (-322 "EXPUPXS.spad" 473519 473542 474818 474967) (-321 "EXPRTUBE.spad" 470807 470815 473509 473514) (-320 "EXPRODE.spad" 467967 467983 470797 470802) (-319 "EXPR2UPS.spad" 464089 464102 467957 467962) (-318 "EXPR2.spad" 463794 463806 464079 464084) (-317 "EXPR.spad" 459069 459079 459783 460190) (-316 "EXPEXPAN.spad" 456009 456034 456641 456734) (-315 "EXITAST.spad" 455745 455753 455999 456004) (-314 "EXIT.spad" 455416 455424 455735 455740) (-313 "EVALCYC.spad" 454876 454890 455406 455411) (-312 "EVALAB.spad" 454448 454458 454866 454871) (-311 "EVALAB.spad" 454018 454030 454438 454443) (-310 "EUCDOM.spad" 451592 451600 453944 454013) (-309 "EUCDOM.spad" 449228 449238 451582 451587) (-308 "ESTOOLS2.spad" 448831 448845 449218 449223) (-307 "ESTOOLS1.spad" 448516 448527 448821 448826) (-306 "ESTOOLS.spad" 440362 440370 448506 448511) (-305 "ESCONT1.spad" 440111 440123 440352 440357) (-304 "ESCONT.spad" 436904 436912 440101 440106) (-303 "ES2.spad" 436409 436425 436894 436899) (-302 "ES1.spad" 435979 435995 436399 436404) (-301 "ES.spad" 428794 428802 435969 435974) (-300 "ES.spad" 421515 421525 428692 428697) (-299 "ERROR.spad" 418842 418850 421505 421510) (-298 "EQTBL.spad" 417314 417336 417523 417550) (-297 "EQ2.spad" 417032 417044 417304 417309) (-296 "EQ.spad" 411837 411847 414624 414736) (-295 "EP.spad" 408163 408173 411827 411832) (-294 "ENV.spad" 406825 406833 408153 408158) (-293 "ENTIRER.spad" 406493 406501 406769 406820) (-292 "EMR.spad" 405700 405741 406419 406488) (-291 "ELTAGG.spad" 403954 403973 405690 405695) (-290 "ELTAGG.spad" 402172 402193 403910 403915) (-289 "ELTAB.spad" 401621 401639 402162 402167) (-288 "ELFUTS.spad" 401008 401027 401611 401616) (-287 "ELEMFUN.spad" 400697 400705 400998 401003) (-286 "ELEMFUN.spad" 400384 400394 400687 400692) (-285 "ELAGG.spad" 398355 398365 400364 400379) (-284 "ELAGG.spad" 396263 396275 398274 398279) (-283 "ELABOR.spad" 395609 395617 396253 396258) (-282 "ELABEXPR.spad" 394541 394549 395599 395604) (-281 "EFUPXS.spad" 391317 391347 394497 394502) (-280 "EFULS.spad" 388153 388176 391273 391278) (-279 "EFSTRUC.spad" 386168 386184 388143 388148) (-278 "EF.spad" 380944 380960 386158 386163) (-277 "EAB.spad" 379220 379228 380934 380939) (-276 "E04UCFA.spad" 378756 378764 379210 379215) (-275 "E04NAFA.spad" 378333 378341 378746 378751) (-274 "E04MBFA.spad" 377913 377921 378323 378328) (-273 "E04JAFA.spad" 377449 377457 377903 377908) (-272 "E04GCFA.spad" 376985 376993 377439 377444) (-271 "E04FDFA.spad" 376521 376529 376975 376980) (-270 "E04DGFA.spad" 376057 376065 376511 376516) (-269 "E04AGNT.spad" 371907 371915 376047 376052) (-268 "DVARCAT.spad" 368596 368606 371897 371902) (-267 "DVARCAT.spad" 365283 365295 368586 368591) (-266 "DSMP.spad" 362750 362764 363055 363182) (-265 "DROPT1.spad" 362415 362425 362740 362745) (-264 "DROPT0.spad" 357272 357280 362405 362410) (-263 "DROPT.spad" 351231 351239 357262 357267) (-262 "DRAWPT.spad" 349404 349412 351221 351226) (-261 "DRAWHACK.spad" 348712 348722 349394 349399) (-260 "DRAWCX.spad" 346182 346190 348702 348707) (-259 "DRAWCURV.spad" 345729 345744 346172 346177) (-258 "DRAWCFUN.spad" 335261 335269 345719 345724) (-257 "DRAW.spad" 328137 328150 335251 335256) (-256 "DQAGG.spad" 326315 326325 328105 328132) (-255 "DPOLCAT.spad" 321664 321680 326183 326310) (-254 "DPOLCAT.spad" 317099 317117 321620 321625) (-253 "DPMO.spad" 309325 309341 309463 309764) (-252 "DPMM.spad" 301564 301582 301689 301990) (-251 "DOMTMPLT.spad" 301224 301232 301554 301559) (-250 "DOMCTOR.spad" 300979 300987 301214 301219) (-249 "DOMAIN.spad" 300066 300074 300969 300974) (-248 "DMP.spad" 297326 297341 297896 298023) (-247 "DLP.spad" 296678 296688 297316 297321) (-246 "DLIST.spad" 295257 295267 295861 295888) (-245 "DLAGG.spad" 293674 293684 295247 295252) (-244 "DIVRING.spad" 293216 293224 293618 293669) (-243 "DIVRING.spad" 292802 292812 293206 293211) (-242 "DISPLAY.spad" 290992 291000 292792 292797) (-241 "DIRPROD2.spad" 289810 289828 290982 290987) (-240 "DIRPROD.spad" 279390 279406 280030 280161) (-239 "DIRPCAT.spad" 278334 278350 279254 279385) (-238 "DIRPCAT.spad" 277007 277025 277929 277934) (-237 "DIOSP.spad" 275832 275840 276997 277002) (-236 "DIOPS.spad" 274828 274838 275812 275827) (-235 "DIOPS.spad" 273798 273810 274784 274789) (-234 "DIFRING.spad" 273094 273102 273778 273793) (-233 "DIFRING.spad" 272398 272408 273084 273089) (-232 "DIFEXT.spad" 271569 271579 272378 272393) (-231 "DIFEXT.spad" 270657 270669 271468 271473) (-230 "DIAGG.spad" 270287 270297 270637 270652) (-229 "DIAGG.spad" 269925 269937 270277 270282) (-228 "DHMATRIX.spad" 268237 268247 269382 269409) (-227 "DFSFUN.spad" 261877 261885 268227 268232) (-226 "DFLOAT.spad" 258608 258616 261767 261872) (-225 "DFINTTLS.spad" 256839 256855 258598 258603) (-224 "DERHAM.spad" 254753 254785 256819 256834) (-223 "DEQUEUE.spad" 254077 254087 254360 254387) (-222 "DEGRED.spad" 253694 253708 254067 254072) (-221 "DEFINTRF.spad" 251276 251286 253684 253689) (-220 "DEFINTEF.spad" 249814 249830 251266 251271) (-219 "DEFAST.spad" 249182 249190 249804 249809) (-218 "DECIMAL.spad" 247288 247296 247649 247742) (-217 "DDFACT.spad" 245101 245118 247278 247283) (-216 "DBLRESP.spad" 244701 244725 245091 245096) (-215 "DBASE.spad" 243365 243375 244691 244696) (-214 "DATAARY.spad" 242827 242840 243355 243360) (-213 "D03FAFA.spad" 242655 242663 242817 242822) (-212 "D03EEFA.spad" 242475 242483 242645 242650) (-211 "D03AGNT.spad" 241561 241569 242465 242470) (-210 "D02EJFA.spad" 241023 241031 241551 241556) (-209 "D02CJFA.spad" 240501 240509 241013 241018) (-208 "D02BHFA.spad" 239991 239999 240491 240496) (-207 "D02BBFA.spad" 239481 239489 239981 239986) (-206 "D02AGNT.spad" 234295 234303 239471 239476) (-205 "D01WGTS.spad" 232614 232622 234285 234290) (-204 "D01TRNS.spad" 232591 232599 232604 232609) (-203 "D01GBFA.spad" 232113 232121 232581 232586) (-202 "D01FCFA.spad" 231635 231643 232103 232108) (-201 "D01ASFA.spad" 231103 231111 231625 231630) (-200 "D01AQFA.spad" 230549 230557 231093 231098) (-199 "D01APFA.spad" 229973 229981 230539 230544) (-198 "D01ANFA.spad" 229467 229475 229963 229968) (-197 "D01AMFA.spad" 228977 228985 229457 229462) (-196 "D01ALFA.spad" 228517 228525 228967 228972) (-195 "D01AKFA.spad" 228043 228051 228507 228512) (-194 "D01AJFA.spad" 227566 227574 228033 228038) (-193 "D01AGNT.spad" 223633 223641 227556 227561) (-192 "CYCLOTOM.spad" 223139 223147 223623 223628) (-191 "CYCLES.spad" 219995 220003 223129 223134) (-190 "CVMP.spad" 219412 219422 219985 219990) (-189 "CTRIGMNP.spad" 217912 217928 219402 219407) (-188 "CTORKIND.spad" 217515 217523 217902 217907) (-187 "CTORCAT.spad" 216764 216772 217505 217510) (-186 "CTORCAT.spad" 216011 216021 216754 216759) (-185 "CTORCALL.spad" 215600 215610 216001 216006) (-184 "CTOR.spad" 215291 215299 215590 215595) (-183 "CSTTOOLS.spad" 214536 214549 215281 215286) (-182 "CRFP.spad" 208260 208273 214526 214531) (-181 "CRCEAST.spad" 207980 207988 208250 208255) (-180 "CRAPACK.spad" 207031 207041 207970 207975) (-179 "CPMATCH.spad" 206535 206550 206956 206961) (-178 "CPIMA.spad" 206240 206259 206525 206530) (-177 "COORDSYS.spad" 201249 201259 206230 206235) (-176 "CONTOUR.spad" 200660 200668 201239 201244) (-175 "CONTFRAC.spad" 196410 196420 200562 200655) (-174 "CONDUIT.spad" 196168 196176 196400 196405) (-173 "COMRING.spad" 195842 195850 196106 196163) (-172 "COMPPROP.spad" 195360 195368 195832 195837) (-171 "COMPLPAT.spad" 195127 195142 195350 195355) (-170 "COMPLEX2.spad" 194842 194854 195117 195122) (-169 "COMPLEX.spad" 188979 188989 189223 189484) (-168 "COMPILER.spad" 188528 188536 188969 188974) (-167 "COMPFACT.spad" 188130 188144 188518 188523) (-166 "COMPCAT.spad" 186202 186212 187864 188125) (-165 "COMPCAT.spad" 184002 184014 185666 185671) (-164 "COMMUPC.spad" 183750 183768 183992 183997) (-163 "COMMONOP.spad" 183283 183291 183740 183745) (-162 "COMMAAST.spad" 183046 183054 183273 183278) (-161 "COMM.spad" 182857 182865 183036 183041) (-160 "COMBOPC.spad" 181772 181780 182847 182852) (-159 "COMBINAT.spad" 180539 180549 181762 181767) (-158 "COMBF.spad" 177921 177937 180529 180534) (-157 "COLOR.spad" 176758 176766 177911 177916) (-156 "COLONAST.spad" 176424 176432 176748 176753) (-155 "CMPLXRT.spad" 176135 176152 176414 176419) (-154 "CLLCTAST.spad" 175797 175805 176125 176130) (-153 "CLIP.spad" 171905 171913 175787 175792) (-152 "CLIF.spad" 170560 170576 171861 171900) (-151 "CLAGG.spad" 167065 167075 170550 170555) (-150 "CLAGG.spad" 163441 163453 166928 166933) (-149 "CINTSLPE.spad" 162772 162785 163431 163436) (-148 "CHVAR.spad" 160910 160932 162762 162767) (-147 "CHARZ.spad" 160825 160833 160890 160905) (-146 "CHARPOL.spad" 160335 160345 160815 160820) (-145 "CHARNZ.spad" 160088 160096 160315 160330) (-144 "CHAR.spad" 157962 157970 160078 160083) (-143 "CFCAT.spad" 157290 157298 157952 157957) (-142 "CDEN.spad" 156486 156500 157280 157285) (-141 "CCLASS.spad" 154635 154643 155897 155936) (-140 "CATEGORY.spad" 153677 153685 154625 154630) (-139 "CATCTOR.spad" 153568 153576 153667 153672) (-138 "CATAST.spad" 153186 153194 153558 153563) (-137 "CASEAST.spad" 152900 152908 153176 153181) (-136 "CARTEN2.spad" 152290 152317 152890 152895) (-135 "CARTEN.spad" 147577 147601 152280 152285) (-134 "CARD.spad" 144872 144880 147551 147572) (-133 "CAPSLAST.spad" 144646 144654 144862 144867) (-132 "CACHSET.spad" 144270 144278 144636 144641) (-131 "CABMON.spad" 143825 143833 144260 144265) (-130 "BYTEORD.spad" 143500 143508 143815 143820) (-129 "BYTEBUF.spad" 141359 141367 142669 142696) (-128 "BYTE.spad" 140786 140794 141349 141354) (-127 "BTREE.spad" 139859 139869 140393 140420) (-126 "BTOURN.spad" 138864 138874 139466 139493) (-125 "BTCAT.spad" 138256 138266 138832 138859) (-124 "BTCAT.spad" 137668 137680 138246 138251) (-123 "BTAGG.spad" 136796 136804 137636 137663) (-122 "BTAGG.spad" 135944 135954 136786 136791) (-121 "BSTREE.spad" 134685 134695 135551 135578) (-120 "BRILL.spad" 132882 132893 134675 134680) (-119 "BRAGG.spad" 131822 131832 132872 132877) (-118 "BRAGG.spad" 130726 130738 131778 131783) (-117 "BPADICRT.spad" 128707 128719 128962 129055) (-116 "BPADIC.spad" 128371 128383 128633 128702) (-115 "BOUNDZRO.spad" 128027 128044 128361 128366) (-114 "BOP1.spad" 125493 125503 128017 128022) (-113 "BOP.spad" 120675 120683 125483 125488) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP80.spad" 96764 96777 97432 97437) (-87 "ASP8.spad" 95807 95820 96754 96759) (-86 "ASP78.spad" 95258 95271 95797 95802) (-85 "ASP77.spad" 94627 94640 95248 95253) (-84 "ASP74.spad" 93719 93732 94617 94622) (-83 "ASP73.spad" 92990 93003 93709 93714) (-82 "ASP7.spad" 92150 92163 92980 92985) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP49.spad" 86342 86355 87333 87338) (-77 "ASP42.spad" 84749 84788 86332 86337) (-76 "ASP41.spad" 83328 83367 84739 84744) (-75 "ASP4.spad" 82623 82636 83318 83323) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP19.spad" 61377 61390 66681 66686) (-63 "ASP12.spad" 60791 60804 61367 61372) (-62 "ASP10.spad" 60062 60075 60781 60786) (-61 "ASP1.spad" 59443 59456 60052 60057) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY12.spad" 57516 57527 58793 58798) (-58 "ARRAY1.spad" 56353 56362 56699 56726) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY1.spad" 45243 45252 46162 46167) (-51 "ANY.spad" 44102 44109 45233 45238) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file