diff options
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r-- | src/share/algebra/browse.daase | 82 |
1 files changed, 41 insertions, 41 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 3a87657e..69102a81 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,5 +1,5 @@ -(2300614 . 3499115852) +(2300614 . 3499555790) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL @@ -88,7 +88,7 @@ NIL ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -2173 UP UPUP -3372) +(-40 -2173 UP UPUP -2217) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) ((-4500 |has| (-421 |#2|) (-376)) (-4505 |has| (-421 |#2|) (-376)) (-4499 |has| (-421 |#2|) (-376)) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) ((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-362))) (-2225 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2225 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (-2225 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (-2225 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-362))))) (-2225 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -660) (QUOTE (-578)))) (-2225 (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) @@ -476,11 +476,11 @@ NIL ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) (((-4509 "*") . T)) NIL -(-137 |minix| -2591 S T$) +(-137 |minix| -2590 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-138 |minix| -2591 R) +(-138 |minix| -2590 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -904,19 +904,19 @@ NIL ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-244 S -2591 R) +(-244 S -2590 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL ((|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasAttribute| |#3| (QUOTE -4504)) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1131)))) -(-245 -2591 R) +(-245 -2590 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) ((-4501 |has| |#2| (-1080)) (-4502 |has| |#2| (-1080)) (-4504 |has| |#2| (-6 -4504)) (-4507 . T)) NIL -(-246 -2591 A B) +(-246 -2590 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-247 -2591 R) +(-247 -2590 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) ((-4501 |has| |#2| (-1080)) (-4502 |has| |#2| (-1080)) (-4504 |has| |#2| (-6 -4504)) (-4507 . T)) ((-2225 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-376))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2225 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2225 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1131))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131))))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2225 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasAttribute| |#2| (QUOTE -4504)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))))) @@ -966,11 +966,11 @@ NIL NIL (-259 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4504 -2225 (-3534 (|has| |#4| (-1080)) (|has| |#4| (-240))) (|has| |#4| (-6 -4504)) (-3534 (|has| |#4| (-1080)) (|has| |#4| (-927 (-1207))))) (-4501 |has| |#4| (-1080)) (-4502 |has| |#4| (-1080)) (-4507 . T)) +((-4504 -2225 (-3533 (|has| |#4| (-1080)) (|has| |#4| (-240))) (|has| |#4| (-6 -4504)) (-3533 (|has| |#4| (-1080)) (|has| |#4| (-927 (-1207))))) (-4501 |has| |#4| (-1080)) (-4502 |has| |#4| (-1080)) (-4507 . T)) ((-2225 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-376))) (-2225 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-1080)))) (-2225 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376)))) (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (QUOTE (-815))) (-2225 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (QUOTE (-871)))) (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (QUOTE (-381))) (-2225 (-12 (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2225 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (|HasCategory| |#4| (QUOTE (-240))) (-2225 (|HasCategory| |#4| (QUOTE (-240))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-2225 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-1131))) (-2225 (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-175)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-240)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-381)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-748)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-815)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-871)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-1131))))) (-2225 (-12 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578))))) (-2225 (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-2225 (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-2225 (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-1131)))) (-2225 (|HasAttribute| |#4| (QUOTE -4504)) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -929) (QUOTE (-1207))))) (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-133))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|))))) (-260 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4504 -2225 (-3534 (|has| |#3| (-1080)) (|has| |#3| (-240))) (|has| |#3| (-6 -4504)) (-3534 (|has| |#3| (-1080)) (|has| |#3| (-927 (-1207))))) (-4501 |has| |#3| (-1080)) (-4502 |has| |#3| (-1080)) (-4507 . T)) +((-4504 -2225 (-3533 (|has| |#3| (-1080)) (|has| |#3| (-240))) (|has| |#3| (-6 -4504)) (-3533 (|has| |#3| (-1080)) (|has| |#3| (-927 (-1207))))) (-4501 |has| |#3| (-1080)) (-4502 |has| |#3| (-1080)) (-4507 . T)) ((-2225 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-376))) (-2225 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2225 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2225 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2225 (-12 (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2225 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2225 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2225 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-1131))) (-2225 (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1131))))) (-2225 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-2225 (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-2225 (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-2225 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1131)))) (-2225 (|HasAttribute| |#3| (QUOTE -4504)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|))))) (-261 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) @@ -1132,7 +1132,7 @@ NIL ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-301 S R |Mod| -3674 -1695 |exactQuo|) +(-301 S R |Mod| -3749 -4168 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) ((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL @@ -1255,7 +1255,7 @@ NIL (-331 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) (((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2924) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1583) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|))))))) (-332 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1576,7 +1576,7 @@ NIL ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-412 -2179 |returnType| -3589 |symbols|) +(-412 -2179 |returnType| -3588 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL @@ -1883,7 +1883,7 @@ NIL (-488 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) (((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2924) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1583) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|))))))) (-489 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4508 . T)) @@ -1912,7 +1912,7 @@ NIL ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4509 "*") |has| |#2| (-175)) (-4500 |has| |#2| (-570)) (-4505 |has| |#2| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T)) ((|HasCategory| |#2| (QUOTE (-938))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-570)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4505)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147))))) -(-496 -2591 S) +(-496 -2590 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4501 |has| |#2| (-1080)) (-4502 |has| |#2| (-1080)) (-4504 |has| |#2| (-6 -4504)) (-4507 . T)) ((-2225 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-376))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2225 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2225 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1131))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131))))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2225 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasAttribute| |#2| (QUOTE -4504)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))))) @@ -2367,7 +2367,7 @@ NIL (-609 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) (((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4501 . T) (-4502 . T) (-4504 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))) (|HasCategory| (-578) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578)))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))) (|HasCategory| (-578) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578)))))) (-610 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) (((-4509 "*") |has| |#1| (-570)) (-4500 |has| |#1| (-570)) (-4501 . T) (-4502 . T) (-4504 . T)) @@ -2410,7 +2410,7 @@ NIL NIL (-620 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4504 -2225 (-3534 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) (-4502 . T) (-4501 . T)) +((-4504 -2225 (-3533 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) (-4502 . T) (-4501 . T)) ((-2225 (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|)))) (-621) ((|constructor| (NIL "This is the datatype for the \\spad{JVM} bytecodes."))) @@ -2546,7 +2546,7 @@ NIL NIL (-654 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4504 -2225 (-3534 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) (-4502 . T) (-4501 . T)) +((-4504 -2225 (-3533 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) (-4502 . T) (-4501 . T)) ((-2225 (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|)))) (-655 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) @@ -2648,7 +2648,7 @@ NIL ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-680 A -4019) +(-680 A -2262) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) ((-4501 . T) (-4502 . T) (-4504 . T)) ((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) @@ -2840,7 +2840,7 @@ NIL ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-728 S -4247 I) +(-728 S -4246 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL @@ -2860,7 +2860,7 @@ NIL ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-733 R |Mod| -3674 -1695 |exactQuo|) +(-733 R |Mod| -3749 -4168 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL @@ -2876,7 +2876,7 @@ NIL ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) ((-4502 |has| |#1| (-175)) (-4501 |has| |#1| (-175)) (-4504 . T)) ((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149)))) -(-737 R |Mod| -3674 -1695 |exactQuo|) +(-737 R |Mod| -3749 -4168 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4504 . T)) NIL @@ -3276,7 +3276,7 @@ NIL ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-837 -2591 S |f|) +(-837 -2590 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4501 |has| |#2| (-1080)) (-4502 |has| |#2| (-1080)) (-4504 |has| |#2| (-6 -4504)) (-4507 . T)) ((-2225 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-376))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2225 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2225 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1131))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131))))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2225 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasAttribute| |#2| (QUOTE -4504)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))))) @@ -3396,7 +3396,7 @@ NIL ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-867 -2591 S) +(-867 -2590 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL @@ -3440,11 +3440,11 @@ NIL ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) -(-878 R |sigma| -4148) +(-878 R |sigma| -4147) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) ((-4501 . T) (-4502 . T) (-4504 . T)) ((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) -(-879 |x| R |sigma| -4148) +(-879 |x| R |sigma| -4147) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) ((-4501 . T) (-4502 . T) (-4504 . T)) ((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-376)))) @@ -3588,7 +3588,7 @@ NIL ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-915 R -4247) +(-915 R -4246) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL @@ -3792,11 +3792,11 @@ NIL ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -911) (|devaluate| |#1|)))) -(-966 R -2173 -4247) +(-966 R -2173 -4246) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-967 -4247) +(-967 -4246) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL @@ -4722,8 +4722,8 @@ NIL NIL (-1198 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4509 "*") -2225 (-3534 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-3534 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-938)))) (-4500 -2225 (-3534 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-570)) (-3534 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-938)))) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) -((-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (|HasCategory| (-578) (QUOTE (-1143))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-376)))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2924) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147))))) +(((-4509 "*") -2225 (-3533 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-3533 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-938)))) (-4500 -2225 (-3533 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-570)) (-3533 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-938)))) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) +((-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (|HasCategory| (-578) (QUOTE (-1143))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-376)))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1583) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147))))) (-1199 R -2173) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL @@ -4747,11 +4747,11 @@ NIL (-1204 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) (((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2924) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1583) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|))))))) (-1205 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4501 . T) (-4502 . T) (-4504 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2924) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1583) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|))))))) (-1206) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL @@ -4975,11 +4975,11 @@ NIL (-1261 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) (((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) -((-2225 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1183)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))) (-2225 (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-149))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (|HasCategory| (-578) (QUOTE (-1143))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1053)))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871))))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1183)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1183)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2924) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-938))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-147))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147)))))) +((-2225 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1183)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))) (-2225 (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-149))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (|HasCategory| (-578) (QUOTE (-1143))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1053)))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871))))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1183)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1183)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1583) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-938))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-147))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147)))))) (-1262 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4509 "*") -2225 (-3534 (|has| |#1| (-376)) (|has| (-1290 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-3534 (|has| |#1| (-376)) (|has| (-1290 |#1| |#2| |#3|) (-938)))) (-4500 -2225 (-3534 (|has| |#1| (-376)) (|has| (-1290 |#1| |#2| |#3|) (-842))) (|has| |#1| (-570)) (-3534 (|has| |#1| (-376)) (|has| (-1290 |#1| |#2| |#3|) (-938)))) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) -((-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (|HasCategory| (-578) (QUOTE (-1143))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-376)))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2924) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147))))) +(((-4509 "*") -2225 (-3533 (|has| |#1| (-376)) (|has| (-1290 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-3533 (|has| |#1| (-376)) (|has| (-1290 |#1| |#2| |#3|) (-938)))) (-4500 -2225 (-3533 (|has| |#1| (-376)) (|has| (-1290 |#1| |#2| |#3|) (-842))) (|has| |#1| (-570)) (-3533 (|has| |#1| (-376)) (|has| (-1290 |#1| |#2| |#3|) (-938)))) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) +((-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (|HasCategory| (-578) (QUOTE (-1143))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-376)))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1583) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147))))) (-1263 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL @@ -5031,7 +5031,7 @@ NIL (-1275 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1143))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2864) (LIST (|devaluate| |#2|) (QUOTE (-1207)))))) +((|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1143))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2863) (LIST (|devaluate| |#2|) (QUOTE (-1207)))))) (-1276 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) (((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4501 . T) (-4502 . T) (-4504 . T)) @@ -5059,11 +5059,11 @@ NIL (-1282 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) (((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) -((|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2924) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) +((|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1583) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-1283 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) (((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2924) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1583) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|))))))) (-1284 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) (((-4509 "*") |has| (-1283 |#2| |#3| |#4|) (-175)) (-4500 |has| (-1283 |#2| |#3| |#4|) (-570)) (-4501 . T) (-4502 . T) (-4504 . T)) @@ -5083,7 +5083,7 @@ NIL (-1288 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-988))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasSignature| |#2| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2924) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1207))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376)))) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-988))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasSignature| |#2| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1583) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1207))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376)))) (-1289 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) (((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4501 . T) (-4502 . T) (-4504 . T)) @@ -5091,7 +5091,7 @@ NIL (-1290 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4501 . T) (-4502 . T) (-4504 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2924) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1583) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|))))))) (-1291 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL |