aboutsummaryrefslogtreecommitdiff
path: root/src/interp/rulesets.boot
diff options
context:
space:
mode:
Diffstat (limited to 'src/interp/rulesets.boot')
-rw-r--r--src/interp/rulesets.boot303
1 files changed, 303 insertions, 0 deletions
diff --git a/src/interp/rulesets.boot b/src/interp/rulesets.boot
new file mode 100644
index 00000000..66f79f7b
--- /dev/null
+++ b/src/interp/rulesets.boot
@@ -0,0 +1,303 @@
+-- Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
+-- All rights reserved.
+--
+-- Redistribution and use in source and binary forms, with or without
+-- modification, are permitted provided that the following conditions are
+-- met:
+--
+-- - Redistributions of source code must retain the above copyright
+-- notice, this list of conditions and the following disclaimer.
+--
+-- - Redistributions in binary form must reproduce the above copyright
+-- notice, this list of conditions and the following disclaimer in
+-- the documentation and/or other materials provided with the
+-- distribution.
+--
+-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
+-- names of its contributors may be used to endorse or promote products
+-- derived from this software without specific prior written permission.
+--
+-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+-- IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+-- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+-- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+-- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+-- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+-- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+--% Mode and Type Resolution Rule Data and Ruleset Creation
+
+--% resolveTT Rules
+
+-- These rules are applied only once at the outermost position of a term
+-- some things can't be done by term rewriting conveniently (e.g. set
+-- difference), so a form is created which is interpreted by
+-- resolveTTRed later. The meanings of these forms are:
+-- Incl(x,y): y if x is a member of y, failed otherwise
+-- SetEqual(x,y): x if y is a permutation of x, failed otherwise
+-- SetComp(x,y): x-y, if y is a subset of x, failed otherwise
+-- SetInter(x,y): intersection of x and y, if nonempty, failed otherwise
+-- SetDiff(x,y): x-y, if x and y have a nonempty intersection, failed ...
+
+-- These first rules will be expanded for each of MP, DMP and NDMP
+
+SETANDFILEQ($mpolyTTRules,'( _
+ ((Resolve (RN) (mpoly1 x t1)) . (mpoly1 x (Resolve (RN) t1))) _
+ ((Resolve (UP x t1) (mpoly1 y t2)) . _
+ (Resolve t1 (mpoly1 (Incl x y) t2))) _
+ ((Resolve (mpoly1 x t1) (G t2)) . _
+ (mpoly1 x (G (VarEqual t1 t2)))) _
+ ((Resolve (VARIABLE x) (mpoly1 y t2)) . _
+ (mpoly1 (Incl x y) t2)) _
+ ((Resolve (mpoly1 x t1) (mpoly1 y t2)) . _
+ (mpoly1 (SetEqual x y) (Resolve t1 t2))) _
+ ((Resolve (mpoly1 x t1) (mpoly1 y t2)) . _
+ (mpoly1 x (Resolve t1 (mpoly1 (SetComp y x) t2)))) _
+ ((Resolve (mpoly1 x t1) (mpoly1 y t2)) . _
+ (mpoly1 y (Resolve (mpoly1 (SetComp x y) t1) t2))) _
+ ((Resolve (mpoly1 x t1) (mpoly1 y t2)) . _
+ (mpoly1 (SetInter x y) (Resolve _
+ (mpoly1 (SetDiff x y) t1) (mpoly1 (SetDiff y x) t2)))) _
+ ))
+
+-- These are the general rules, excluding those above.
+
+SETANDFILEQ($generalTTRules, '( _
+ ((Resolve (L (L t1)) (M t2)) . (M (Resolve t1 t2))) _
+ ((Resolve (EQ t1) (B)) . (B)) _
+ ((Resolve (SY) t1) . (Resolve (P (I)) t1)) _
+ ((Resolve (M t1) (SM x t2)) . (M (Resolve t1 t2))) _
+ ((Resolve (M t1) (RM x y t2)) . (M (Resolve t1 t2))) _
+ ((Resolve (SM x t1) (RM y y t2)) . _
+ (SM (VarEqual x y) (Resolve t1 t2))) _
+ ((Resolve (V t1) (L t2)) . (V (Resolve t1 t2))) _
+ ((Resolve (FF t1) (FR t2)) . (FR (Resolve t1 t2))) _
+ ((Resolve (F) (RN)) . (F) ) _
+ _
+ ((Resolve (OV x) (OV y)) . (OV (SetUnion x y))) _
+ ((Resolve (P t1) (UP y t2)) . (Resolve (P t1) t2)) _
+ _
+ ((Resolve (UP y t1) (G t2)) . (UP y (G (VarEqual t1 t2)))) _
+ ((Resolve (P t1) (P t2)) . (P (Resolve t1 t2))) _
+ ((Resolve (G t1) (G t2)) . (G (Resolve t1 t2))) _
+ ((Resolve (G t1) (P t2)) . (P (G (VarEqual t1 t2)))) _
+ _
+ ((Resolve (AF t1) (EF t2)) . (EF (Resolve t1 t2))) _
+ ((Resolve (AF t1) (LF t2)) . (LF (Resolve t1 t2))) _
+ ((Resolve (AF t1) (FE t2)) . (FE (Resolve t1 t2))) _
+ ((Resolve (EF t1) (LF t2)) . (LF (Resolve t1 t2))) _
+ ((Resolve (EF t1) (FE t2)) . (FE (Resolve t1 t2))) _
+ ((Resolve (LF t1) (FE t2)) . (FE (Resolve t1 t2))) _
+ _
+ ((Resolve (RN) (P t1)) . (P (Resolve (RN) t1))) _
+ ((Resolve (RN) (UP x t1)) . (UP x (Resolve (RN) t1))) _
+ ((Resolve (RN) (UPS x t1)) . (UPS x (Resolve (RN) t1))) _
+ ((Resolve (RN) (CFPS x t1)) . (CFPS x (Resolve (RN) t1))) _
+ _
+ ((Resolve (RR) (EF t1)) . (EF (Resolve (RR) t1))) _
+ ((Resolve (P t1) (AF t2)) . (AF (Resolve t1 t2 ))) _
+ ((Resolve (P t1) (EF t2)) . (EF (Resolve t1 t2 ))) _
+ ((Resolve (P t1) (LF t2)) . (LF (Resolve t1 t2 ))) _
+ _
+ ((Resolve (MP x t1) (DMP y t2)) . _
+ (MP (SetEqual x y) (Resolve t1 t2))) _
+ ((Resolve (MP x t1) (DMP y t2)) . _
+ (MP x (Resolve t1 (DMP (SetComp y x) t2)))) _
+ ((Resolve (MP x t1) (DMP y t2)) . _
+ (MP y (Resolve (MP (SetComp x y) t1) t2))) _
+ ((Resolve (MP x t1) (DMP y t2)) . _
+ (MP (SetInter x y) (Resolve _
+ (MP (SetDiff x y) t1) (DMP (SetDiff y x) t2)))) _
+ _
+ ((Resolve (MP x t1) (NDMP y t2)) . _
+ (MP (SetEqual x y) (Resolve t1 t2))) _
+ ((Resolve (MP x t1) (NDMP y t2)) . _
+ (MP x (Resolve t1 (NDMP (SetComp y x) t2)))) _
+ ((Resolve (MP x t1) (NDMP y t2)) . _
+ (MP y (Resolve (MP (SetComp x y) t1) t2))) _
+ ((Resolve (MP x t1) (NDMP y t2)) . _
+ (MP (SetInter x y) (Resolve _
+ (MP (SetDiff x y) t1) (NDMP (SetDiff y x) t2)))) _
+ _
+ ((Resolve (DMP x t1) (NDMP y t2)) . _
+ (DMP (SetEqual x y) (Resolve t1 t2))) _
+ ((Resolve (DMP x t1) (NDMP y t2)) . _
+ (DMP x (Resolve t1 (NDMP (SetComp y x) t2)))) _
+ ((Resolve (DMP x t1) (NDMP y t2)) . _
+ (DMP y (Resolve (DMP (SetComp x y) t1) t2))) _
+ ((Resolve (DMP x t1) (NDMP y t2)) . _
+ (DMP (SetInter x y) (Resolve _
+ (DMP (SetDiff x y) t1) (NDMP (SetDiff y x) t2)))) _
+ ))
+
+-- The following creates the ruleset
+
+createResolveTTRules() ==
+ -- expand multivariate polynomial rules
+ mps := '(MP DMP NDMP)
+ mpRules := "append"/[SUBST(mp,'mpoly1,$mpolyTTRules) for mp in mps]
+ $Res := CONS('(t1 t2 x y),
+ EQSUBSTLIST($nameList,$abList,append($generalTTRules,mpRules)))
+ true
+
+--% resolveTM Rules
+
+-- Same rules as for resolveTT, with two exceptions:
+-- Diff(x,y): removes y from x, if possible, failed otherwise
+-- SetIncl(x,y): y if x is a subset of y, failed otherwise
+
+-- These first rules will be expanded for each of MP, DMP and NDMP
+
+SETANDFILEQ($mpolyTMRules,'( _
+ ((Resolve (mpoly1 x t1) (P t2)) . (Resolve t1 (P t2))) _
+ ((Resolve (mpoly1 (x) t1) (UP x t2)) . (UP x (Resolve t1 t2))) _
+ ((Resolve (mpoly1 x t1) (UP y t2)) . _
+ (UP y (Resolve (mpoly1 (Diff x y) t1) t2))) _
+ ((Resolve (UP x t1) (mpoly1 y t2)) . _
+ (Resolve t1 (mpoly1 (Incl x y) t2))) _
+ ((Resolve (VARIABLE x) (mpoly1 y t2)) . _
+ (mpoly1 (Incl x y) (Resolve (I) t2))) _
+ ((Resolve (mpoly1 x t1) (mpoly2 y t2)) . _
+ (Resolve t1 (mpoly2 (SetIncl x y) t2))) _
+ ((Resolve (mpoly1 x t1) (mpoly2 y t2)) . _
+ (mpoly2 y (Resolve (mpoly1 (SetComp x y) t1) t2))) _
+ ((Resolve (mpoly1 x t1) (mpoly2 y t2)) . _
+ (Resolve (mpoly1 (SetDiff x y) t1) (mpoly2 y t2))) _
+ ))
+
+-- These are the general rules, excluding those above.
+
+SETANDFILEQ($generalTMRules,'( _
+ ((Resolve (VARIABLE x) (P t1)) . (P (Resolve (I) t1))) _
+ ((Resolve (VARIABLE x) (UP y t1)) . _
+ (UP (VarEqual x y) (Resolve (I) t1))) _
+ ((Resolve (VARIABLE x) (UPS y t1)) . _
+ (UPS (VarEqual x y) (Resolve (I) t1))) _
+ ((Resolve (VARIABLE x) (CFPS y t1)) . _
+ (CFPS (VarEqual x y) (Resolve (RN) t1))) _
+ ((Resolve (VARIABLE x) (ELFPS y t1)) . _
+ (ELFPS (VarEqual x y) (Resolve (RN) t1))) _
+ ((Resolve (VARIABLE x) (EF t1)) . (EF t1)) _
+ ((Resolve (L (L (SY))) (M _*_*)) . (M (P (I)))) _
+ ((Resolve (L (L (SY))) (SM x _*_*)) . (SM x (P (I)))) _
+ ((Resolve (L (L t1)) (M t2)) . (M (Resolve t1 t2))) _
+ ((Resolve (L (L t1)) (SM x t2)) . (SM x (Resolve t1 t2))) _
+ ((Resolve (L (L t1)) (RM x y t2)) . (RM x y (Resolve t1 t2))) _
+ ((Resolve (SY) t1) . (Resolve (P (I)) t1)) _
+ ((Resolve (VARIABLE x) t1) . (Resolve (P (I)) t1)) _
+ ((Resolve (SM x t1) (M t2)) . (M (Resolve t1 t2))) _
+ ((Resolve (RM x y t1) (M t2)) . (M (Resolve t1 t2))) _
+ _
+ ((Resolve (M t1) (L _*_*)) . (L (L t1))) _
+ ((Resolve (SM x t1) (L _*_*)) . (L (L t1))) _
+ ((Resolve (RM x y t1) (L _*_*)) . (L (L t1))) _
+ ((Resolve (M t1) (L t2)) . (L (Resolve (L t1) t2))) _
+ ((Resolve (SM x t1) (L t2)) . (L (Resolve (L t1) t2))) _
+ ((Resolve (RM x y t1) (L t2)) . (L (Resolve (L t1) t2))) _
+ _
+ ((Resolve (M t1) (V _*_*)) . (V (V t1))) _
+ ((Resolve (SM x t1) (V _*_*)) . (V (V t1))) _
+ ((Resolve (RM x y t1) (V _*_*)) . (V (V t1))) _
+ ((Resolve (M t1) (V t2)) . (V (Resolve (V t1) t2))) _
+ ((Resolve (SM x t1) (V t2)) . (V (Resolve (V t1) t2))) _
+ ((Resolve (RM x y t1) (V t2)) . (V (Resolve (V t1) t2))) _
+ _
+ ((Resolve (L t1) (V t2)) . (V (Resolve t1 t2))) _
+ ((Resolve (V t1) (L t2)) . (L (Resolve t1 t2))) _
+ ((Resolve (FF t1) (FR t2)) . (FR (Resolve t1 t2))) _
+ ((Resolve (UP x t1) (P t2)) . (Resolve t1 (P t2))) _
+ ))
+
+-- Private abbreviation table for resolve rules
+SETANDFILEQ($resolveAbbreviations, '( _
+ (P . Polynomial) _
+ (G . Gaussian) _
+ (L . List) _
+ (M . Matrix) _
+ (EQ . Equation) _
+ (B . Boolean) _
+ (SY . Symbol) _
+ (I . Integer) _
+ (SM . SquareMatrix) _
+ (RM . RectangularMatrix) _
+ (V . Vector) _
+ (FF . FactoredForm) _
+ (FR . FactoredRing) _
+ (RN . RationalNumber) _
+ (F . Float) _
+ (OV . OrderedVariableList) _
+ (UP . UnivariatePoly) _
+ (DMP . DistributedMultivariatePolynomial) _
+ (MP . MultivariatePolynomial) _
+ (HDMP . HomogeneousDistributedMultivariatePolynomial) _
+ (QF . QuotientField) _
+ (RF . RationalFunction) _
+ (RE . RadicalExtension) _
+ (RR . RationalRadicals) _
+ (UPS . UnivariatePowerSeries) _
+ (CFPS . ContinuedFractionPowerSeries) _
+ (ELFPS . EllipticFunctionPowerSeries) _
+ (EF . ElementaryFunction) _
+ (VARIABLE . Variable) _
+ ))
+
+SETANDFILEQ($newResolveAbbreviations, '( _
+ (P . Polynomial) _
+ (G . Complex) _
+ (L . List) _
+ (M . Matrix) _
+ (EQ . Equation) _
+ (B . Boolean) _
+ (SY . Symbol) _
+ (I . Integer) _
+ (SM . SquareMatrix) _
+ (RM . RectangularMatrix) _
+ (V . Vector) _
+ (FF . Factored) _
+ (FR . Factored) _
+ (F . Float) _
+ (OV . OrderedVariableList) _
+ (UP . UnivariatePolynomial) _
+ (DMP . DistributedMultivariatePolynomial) _
+ (MP . MultivariatePolynomial) _
+ (HDMP . HomogeneousDistributedMultivariatePolynomial) _
+ (QF . Fraction) _
+ (UPS . UnivariatePowerSeries) _
+ (VARIABLE . Variable) _
+ ))
+
+-- The following creates the ruleset
+
+createResolveTMRules() ==
+ -- expand multivariate polynomial rules
+ mps := '(MP DMP NDMP)
+ mpRules0 := "append"/[SUBST(mp,'mpoly1,$mpolyTMRules) for mp in mps]
+ mpRules := "append"/[SUBST(mp,'mpoly2,mpRules0) for mp in mps]
+ $ResMode := CONS('(t1 t2 x y),
+ EQSUBSTLIST($nameList,$abList,append(mpRules,$generalTMRules)))
+ true
+
+createTypeEquivRules() ==
+ -- used by eqType, for example
+ $TypeEQ := CONS('(t1), EQSUBSTLIST($nameList,$abList,'(
+ ((QF (P t1)) . (RF t1))
+ ((QF (I)) . (RN))
+ ((RE (RN)) . (RR)) )))
+ $TypeEqui := CONS(CAR $TypeEQ, [[b,:a] for [a,:b] in CDR $TypeEQ])
+ true
+
+initializeRuleSets() ==
+ $abList: local :=
+ ASSOCLEFT $newResolveAbbreviations
+ $nameList: local :=
+ ASSOCRIGHT $newResolveAbbreviations
+ createResolveTTRules()
+ createResolveTMRules()
+ createTypeEquivRules()
+ $ruleSetsInitialized := true
+ true