diff options
Diffstat (limited to 'src/interp/rulesets.boot')
-rw-r--r-- | src/interp/rulesets.boot | 303 |
1 files changed, 303 insertions, 0 deletions
diff --git a/src/interp/rulesets.boot b/src/interp/rulesets.boot new file mode 100644 index 00000000..66f79f7b --- /dev/null +++ b/src/interp/rulesets.boot @@ -0,0 +1,303 @@ +-- Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +-- All rights reserved. +-- +-- Redistribution and use in source and binary forms, with or without +-- modification, are permitted provided that the following conditions are +-- met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +-- IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +-- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +-- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +-- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +-- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +-- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + +--% Mode and Type Resolution Rule Data and Ruleset Creation + +--% resolveTT Rules + +-- These rules are applied only once at the outermost position of a term +-- some things can't be done by term rewriting conveniently (e.g. set +-- difference), so a form is created which is interpreted by +-- resolveTTRed later. The meanings of these forms are: +-- Incl(x,y): y if x is a member of y, failed otherwise +-- SetEqual(x,y): x if y is a permutation of x, failed otherwise +-- SetComp(x,y): x-y, if y is a subset of x, failed otherwise +-- SetInter(x,y): intersection of x and y, if nonempty, failed otherwise +-- SetDiff(x,y): x-y, if x and y have a nonempty intersection, failed ... + +-- These first rules will be expanded for each of MP, DMP and NDMP + +SETANDFILEQ($mpolyTTRules,'( _ + ((Resolve (RN) (mpoly1 x t1)) . (mpoly1 x (Resolve (RN) t1))) _ + ((Resolve (UP x t1) (mpoly1 y t2)) . _ + (Resolve t1 (mpoly1 (Incl x y) t2))) _ + ((Resolve (mpoly1 x t1) (G t2)) . _ + (mpoly1 x (G (VarEqual t1 t2)))) _ + ((Resolve (VARIABLE x) (mpoly1 y t2)) . _ + (mpoly1 (Incl x y) t2)) _ + ((Resolve (mpoly1 x t1) (mpoly1 y t2)) . _ + (mpoly1 (SetEqual x y) (Resolve t1 t2))) _ + ((Resolve (mpoly1 x t1) (mpoly1 y t2)) . _ + (mpoly1 x (Resolve t1 (mpoly1 (SetComp y x) t2)))) _ + ((Resolve (mpoly1 x t1) (mpoly1 y t2)) . _ + (mpoly1 y (Resolve (mpoly1 (SetComp x y) t1) t2))) _ + ((Resolve (mpoly1 x t1) (mpoly1 y t2)) . _ + (mpoly1 (SetInter x y) (Resolve _ + (mpoly1 (SetDiff x y) t1) (mpoly1 (SetDiff y x) t2)))) _ + )) + +-- These are the general rules, excluding those above. + +SETANDFILEQ($generalTTRules, '( _ + ((Resolve (L (L t1)) (M t2)) . (M (Resolve t1 t2))) _ + ((Resolve (EQ t1) (B)) . (B)) _ + ((Resolve (SY) t1) . (Resolve (P (I)) t1)) _ + ((Resolve (M t1) (SM x t2)) . (M (Resolve t1 t2))) _ + ((Resolve (M t1) (RM x y t2)) . (M (Resolve t1 t2))) _ + ((Resolve (SM x t1) (RM y y t2)) . _ + (SM (VarEqual x y) (Resolve t1 t2))) _ + ((Resolve (V t1) (L t2)) . (V (Resolve t1 t2))) _ + ((Resolve (FF t1) (FR t2)) . (FR (Resolve t1 t2))) _ + ((Resolve (F) (RN)) . (F) ) _ + _ + ((Resolve (OV x) (OV y)) . (OV (SetUnion x y))) _ + ((Resolve (P t1) (UP y t2)) . (Resolve (P t1) t2)) _ + _ + ((Resolve (UP y t1) (G t2)) . (UP y (G (VarEqual t1 t2)))) _ + ((Resolve (P t1) (P t2)) . (P (Resolve t1 t2))) _ + ((Resolve (G t1) (G t2)) . (G (Resolve t1 t2))) _ + ((Resolve (G t1) (P t2)) . (P (G (VarEqual t1 t2)))) _ + _ + ((Resolve (AF t1) (EF t2)) . (EF (Resolve t1 t2))) _ + ((Resolve (AF t1) (LF t2)) . (LF (Resolve t1 t2))) _ + ((Resolve (AF t1) (FE t2)) . (FE (Resolve t1 t2))) _ + ((Resolve (EF t1) (LF t2)) . (LF (Resolve t1 t2))) _ + ((Resolve (EF t1) (FE t2)) . (FE (Resolve t1 t2))) _ + ((Resolve (LF t1) (FE t2)) . (FE (Resolve t1 t2))) _ + _ + ((Resolve (RN) (P t1)) . (P (Resolve (RN) t1))) _ + ((Resolve (RN) (UP x t1)) . (UP x (Resolve (RN) t1))) _ + ((Resolve (RN) (UPS x t1)) . (UPS x (Resolve (RN) t1))) _ + ((Resolve (RN) (CFPS x t1)) . (CFPS x (Resolve (RN) t1))) _ + _ + ((Resolve (RR) (EF t1)) . (EF (Resolve (RR) t1))) _ + ((Resolve (P t1) (AF t2)) . (AF (Resolve t1 t2 ))) _ + ((Resolve (P t1) (EF t2)) . (EF (Resolve t1 t2 ))) _ + ((Resolve (P t1) (LF t2)) . (LF (Resolve t1 t2 ))) _ + _ + ((Resolve (MP x t1) (DMP y t2)) . _ + (MP (SetEqual x y) (Resolve t1 t2))) _ + ((Resolve (MP x t1) (DMP y t2)) . _ + (MP x (Resolve t1 (DMP (SetComp y x) t2)))) _ + ((Resolve (MP x t1) (DMP y t2)) . _ + (MP y (Resolve (MP (SetComp x y) t1) t2))) _ + ((Resolve (MP x t1) (DMP y t2)) . _ + (MP (SetInter x y) (Resolve _ + (MP (SetDiff x y) t1) (DMP (SetDiff y x) t2)))) _ + _ + ((Resolve (MP x t1) (NDMP y t2)) . _ + (MP (SetEqual x y) (Resolve t1 t2))) _ + ((Resolve (MP x t1) (NDMP y t2)) . _ + (MP x (Resolve t1 (NDMP (SetComp y x) t2)))) _ + ((Resolve (MP x t1) (NDMP y t2)) . _ + (MP y (Resolve (MP (SetComp x y) t1) t2))) _ + ((Resolve (MP x t1) (NDMP y t2)) . _ + (MP (SetInter x y) (Resolve _ + (MP (SetDiff x y) t1) (NDMP (SetDiff y x) t2)))) _ + _ + ((Resolve (DMP x t1) (NDMP y t2)) . _ + (DMP (SetEqual x y) (Resolve t1 t2))) _ + ((Resolve (DMP x t1) (NDMP y t2)) . _ + (DMP x (Resolve t1 (NDMP (SetComp y x) t2)))) _ + ((Resolve (DMP x t1) (NDMP y t2)) . _ + (DMP y (Resolve (DMP (SetComp x y) t1) t2))) _ + ((Resolve (DMP x t1) (NDMP y t2)) . _ + (DMP (SetInter x y) (Resolve _ + (DMP (SetDiff x y) t1) (NDMP (SetDiff y x) t2)))) _ + )) + +-- The following creates the ruleset + +createResolveTTRules() == + -- expand multivariate polynomial rules + mps := '(MP DMP NDMP) + mpRules := "append"/[SUBST(mp,'mpoly1,$mpolyTTRules) for mp in mps] + $Res := CONS('(t1 t2 x y), + EQSUBSTLIST($nameList,$abList,append($generalTTRules,mpRules))) + true + +--% resolveTM Rules + +-- Same rules as for resolveTT, with two exceptions: +-- Diff(x,y): removes y from x, if possible, failed otherwise +-- SetIncl(x,y): y if x is a subset of y, failed otherwise + +-- These first rules will be expanded for each of MP, DMP and NDMP + +SETANDFILEQ($mpolyTMRules,'( _ + ((Resolve (mpoly1 x t1) (P t2)) . (Resolve t1 (P t2))) _ + ((Resolve (mpoly1 (x) t1) (UP x t2)) . (UP x (Resolve t1 t2))) _ + ((Resolve (mpoly1 x t1) (UP y t2)) . _ + (UP y (Resolve (mpoly1 (Diff x y) t1) t2))) _ + ((Resolve (UP x t1) (mpoly1 y t2)) . _ + (Resolve t1 (mpoly1 (Incl x y) t2))) _ + ((Resolve (VARIABLE x) (mpoly1 y t2)) . _ + (mpoly1 (Incl x y) (Resolve (I) t2))) _ + ((Resolve (mpoly1 x t1) (mpoly2 y t2)) . _ + (Resolve t1 (mpoly2 (SetIncl x y) t2))) _ + ((Resolve (mpoly1 x t1) (mpoly2 y t2)) . _ + (mpoly2 y (Resolve (mpoly1 (SetComp x y) t1) t2))) _ + ((Resolve (mpoly1 x t1) (mpoly2 y t2)) . _ + (Resolve (mpoly1 (SetDiff x y) t1) (mpoly2 y t2))) _ + )) + +-- These are the general rules, excluding those above. + +SETANDFILEQ($generalTMRules,'( _ + ((Resolve (VARIABLE x) (P t1)) . (P (Resolve (I) t1))) _ + ((Resolve (VARIABLE x) (UP y t1)) . _ + (UP (VarEqual x y) (Resolve (I) t1))) _ + ((Resolve (VARIABLE x) (UPS y t1)) . _ + (UPS (VarEqual x y) (Resolve (I) t1))) _ + ((Resolve (VARIABLE x) (CFPS y t1)) . _ + (CFPS (VarEqual x y) (Resolve (RN) t1))) _ + ((Resolve (VARIABLE x) (ELFPS y t1)) . _ + (ELFPS (VarEqual x y) (Resolve (RN) t1))) _ + ((Resolve (VARIABLE x) (EF t1)) . (EF t1)) _ + ((Resolve (L (L (SY))) (M _*_*)) . (M (P (I)))) _ + ((Resolve (L (L (SY))) (SM x _*_*)) . (SM x (P (I)))) _ + ((Resolve (L (L t1)) (M t2)) . (M (Resolve t1 t2))) _ + ((Resolve (L (L t1)) (SM x t2)) . (SM x (Resolve t1 t2))) _ + ((Resolve (L (L t1)) (RM x y t2)) . (RM x y (Resolve t1 t2))) _ + ((Resolve (SY) t1) . (Resolve (P (I)) t1)) _ + ((Resolve (VARIABLE x) t1) . (Resolve (P (I)) t1)) _ + ((Resolve (SM x t1) (M t2)) . (M (Resolve t1 t2))) _ + ((Resolve (RM x y t1) (M t2)) . (M (Resolve t1 t2))) _ + _ + ((Resolve (M t1) (L _*_*)) . (L (L t1))) _ + ((Resolve (SM x t1) (L _*_*)) . (L (L t1))) _ + ((Resolve (RM x y t1) (L _*_*)) . (L (L t1))) _ + ((Resolve (M t1) (L t2)) . (L (Resolve (L t1) t2))) _ + ((Resolve (SM x t1) (L t2)) . (L (Resolve (L t1) t2))) _ + ((Resolve (RM x y t1) (L t2)) . (L (Resolve (L t1) t2))) _ + _ + ((Resolve (M t1) (V _*_*)) . (V (V t1))) _ + ((Resolve (SM x t1) (V _*_*)) . (V (V t1))) _ + ((Resolve (RM x y t1) (V _*_*)) . (V (V t1))) _ + ((Resolve (M t1) (V t2)) . (V (Resolve (V t1) t2))) _ + ((Resolve (SM x t1) (V t2)) . (V (Resolve (V t1) t2))) _ + ((Resolve (RM x y t1) (V t2)) . (V (Resolve (V t1) t2))) _ + _ + ((Resolve (L t1) (V t2)) . (V (Resolve t1 t2))) _ + ((Resolve (V t1) (L t2)) . (L (Resolve t1 t2))) _ + ((Resolve (FF t1) (FR t2)) . (FR (Resolve t1 t2))) _ + ((Resolve (UP x t1) (P t2)) . (Resolve t1 (P t2))) _ + )) + +-- Private abbreviation table for resolve rules +SETANDFILEQ($resolveAbbreviations, '( _ + (P . Polynomial) _ + (G . Gaussian) _ + (L . List) _ + (M . Matrix) _ + (EQ . Equation) _ + (B . Boolean) _ + (SY . Symbol) _ + (I . Integer) _ + (SM . SquareMatrix) _ + (RM . RectangularMatrix) _ + (V . Vector) _ + (FF . FactoredForm) _ + (FR . FactoredRing) _ + (RN . RationalNumber) _ + (F . Float) _ + (OV . OrderedVariableList) _ + (UP . UnivariatePoly) _ + (DMP . DistributedMultivariatePolynomial) _ + (MP . MultivariatePolynomial) _ + (HDMP . HomogeneousDistributedMultivariatePolynomial) _ + (QF . QuotientField) _ + (RF . RationalFunction) _ + (RE . RadicalExtension) _ + (RR . RationalRadicals) _ + (UPS . UnivariatePowerSeries) _ + (CFPS . ContinuedFractionPowerSeries) _ + (ELFPS . EllipticFunctionPowerSeries) _ + (EF . ElementaryFunction) _ + (VARIABLE . Variable) _ + )) + +SETANDFILEQ($newResolveAbbreviations, '( _ + (P . Polynomial) _ + (G . Complex) _ + (L . List) _ + (M . Matrix) _ + (EQ . Equation) _ + (B . Boolean) _ + (SY . Symbol) _ + (I . Integer) _ + (SM . SquareMatrix) _ + (RM . RectangularMatrix) _ + (V . Vector) _ + (FF . Factored) _ + (FR . Factored) _ + (F . Float) _ + (OV . OrderedVariableList) _ + (UP . UnivariatePolynomial) _ + (DMP . DistributedMultivariatePolynomial) _ + (MP . MultivariatePolynomial) _ + (HDMP . HomogeneousDistributedMultivariatePolynomial) _ + (QF . Fraction) _ + (UPS . UnivariatePowerSeries) _ + (VARIABLE . Variable) _ + )) + +-- The following creates the ruleset + +createResolveTMRules() == + -- expand multivariate polynomial rules + mps := '(MP DMP NDMP) + mpRules0 := "append"/[SUBST(mp,'mpoly1,$mpolyTMRules) for mp in mps] + mpRules := "append"/[SUBST(mp,'mpoly2,mpRules0) for mp in mps] + $ResMode := CONS('(t1 t2 x y), + EQSUBSTLIST($nameList,$abList,append(mpRules,$generalTMRules))) + true + +createTypeEquivRules() == + -- used by eqType, for example + $TypeEQ := CONS('(t1), EQSUBSTLIST($nameList,$abList,'( + ((QF (P t1)) . (RF t1)) + ((QF (I)) . (RN)) + ((RE (RN)) . (RR)) ))) + $TypeEqui := CONS(CAR $TypeEQ, [[b,:a] for [a,:b] in CDR $TypeEQ]) + true + +initializeRuleSets() == + $abList: local := + ASSOCLEFT $newResolveAbbreviations + $nameList: local := + ASSOCRIGHT $newResolveAbbreviations + createResolveTTRules() + createResolveTMRules() + createTypeEquivRules() + $ruleSetsInitialized := true + true |