aboutsummaryrefslogtreecommitdiff
path: root/src/input/series.input.pamphlet
diff options
context:
space:
mode:
Diffstat (limited to 'src/input/series.input.pamphlet')
-rw-r--r--src/input/series.input.pamphlet56
1 files changed, 56 insertions, 0 deletions
diff --git a/src/input/series.input.pamphlet b/src/input/series.input.pamphlet
new file mode 100644
index 00000000..a9df6050
--- /dev/null
+++ b/src/input/series.input.pamphlet
@@ -0,0 +1,56 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/input series.input}
+\author{Clifton J. Williamson}
+\maketitle
+\begin{abstract}
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+\section{License}
+<<license>>=
+--Copyright The Numerical Algorithms Group Limited 1994.
+@
+<<*>>=
+<<license>>
+
+--% Expression To Power Series
+-- We compute series expansions of various functions using EXPR2UPS.
+-- Author: Clifton J. Williamson
+-- Date Created: 1 June 1990
+-- Date Last Updated: 1 June 1990
+-- Keywords: Taylor, Laurent, Puiseux, series
+-- References:
+
+)clear all
+
+-- Test functions in EXPR2UPS:
+
+xT := taylor(x)
+sin(tan(xT))
+taylor(asec(2+x))
+sec %
+taylor(sin(x),x = %pi/4)
+
+xL := laurent(x)
+1/xL - cot(xL)
+laurent(csc(x))
+laurent(1/log(x),x = 1)
+
+xP := puiseux(x)
+sqrt(xP) - sqrt(sin(xP))
+puiseux(sqrt(1 - cos(x))/x)
+puiseux(sqrt(1 - tan(x)),x = %pi/2)
+
+xS := series(x)
+sin(xS)**(1/3) - sin(xS**(1/3))
+series(log(tan(x)))
+series(log(cot(x)),x = %pi/2)
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} nothing
+\end{thebibliography}
+\end{document}