diff options
Diffstat (limited to 'src/input/series.input.pamphlet')
-rw-r--r-- | src/input/series.input.pamphlet | 56 |
1 files changed, 56 insertions, 0 deletions
diff --git a/src/input/series.input.pamphlet b/src/input/series.input.pamphlet new file mode 100644 index 00000000..a9df6050 --- /dev/null +++ b/src/input/series.input.pamphlet @@ -0,0 +1,56 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/input series.input} +\author{Clifton J. Williamson} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{License} +<<license>>= +--Copyright The Numerical Algorithms Group Limited 1994. +@ +<<*>>= +<<license>> + +--% Expression To Power Series +-- We compute series expansions of various functions using EXPR2UPS. +-- Author: Clifton J. Williamson +-- Date Created: 1 June 1990 +-- Date Last Updated: 1 June 1990 +-- Keywords: Taylor, Laurent, Puiseux, series +-- References: + +)clear all + +-- Test functions in EXPR2UPS: + +xT := taylor(x) +sin(tan(xT)) +taylor(asec(2+x)) +sec % +taylor(sin(x),x = %pi/4) + +xL := laurent(x) +1/xL - cot(xL) +laurent(csc(x)) +laurent(1/log(x),x = 1) + +xP := puiseux(x) +sqrt(xP) - sqrt(sin(xP)) +puiseux(sqrt(1 - cos(x))/x) +puiseux(sqrt(1 - tan(x)),x = %pi/2) + +xS := series(x) +sin(xS)**(1/3) - sin(xS**(1/3)) +series(log(tan(x))) +series(log(cot(x)),x = %pi/2) +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |