diff options
Diffstat (limited to 'src/input/lodesys.input.pamphlet')
-rw-r--r-- | src/input/lodesys.input.pamphlet | 57 |
1 files changed, 57 insertions, 0 deletions
diff --git a/src/input/lodesys.input.pamphlet b/src/input/lodesys.input.pamphlet new file mode 100644 index 00000000..8feaf0b4 --- /dev/null +++ b/src/input/lodesys.input.pamphlet @@ -0,0 +1,57 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/input lodesys.input} +\author{The Axiom Team} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{License} +<<license>>= +--Copyright The Numerical Algorithms Group Limited 1994. +@ +<<*>>= +<<license>> +)cl all +-- There are 2 different ways to input a homogeneous 1st order system of +-- linear ordinary differential equations of the form dy/dt = M y +-- where y is a vector of unknown functions of t. +-- the first is simply solve(M, t) which will be understood to be +-- a differential system: +M := matrix [[ 1+4*t, -5*t, 7*t, -8*t, 8*t, -6*t],_ + [ -10*t, 1+9*t, -14*t, 16*t, -16*t, 12*t],_ + [ -5*t, 5*t, 1-8*t, 8*t, -8*t, 6*t],_ + [ 10*t, -10*t, 14*t,1-17*t, 16*t, -12*t],_ + [ 5*t, -5*t, 7*t, -8*t, 1+7*t, -6*t],_ + [ -5*t, 5*t, -7*t, 8*t, -8*t, 1+5*t]] +-- the original system in Barkatou's AAECC paper is t^2 dy/dt = M*y +sol := solve(inv(t**2) * M, t) +-- verify the solutions +[t**2 * map(h +-> D(h, t), v) - M * v for v in sol] +-- the second way is to type each equation using a separate operator for +-- each unknown: +x := operator x +y := operator y +sys := [D(x t, t) = x t + sqrt 3 * y t, D(y t, t) = sqrt 3 * x t - y t] +solve(sys, [x, y], t).basis +-- Similarly there are 2 different ways to input the inhomogeneous system +-- dy/dt = M y + v where v is a given vector of functions. +-- the first is solve(M, v, t): +v := vector [1, (-29*t + 19)/5, -1, t + 1, - 2*t + 3, -1] +-- get a particular solution to t^2 dy/dt = M y + v +solp := solve(inv(t**2) * M, inv(t**2) * v, t).particular +-- verify the particular solution +t**2 * map(h +-> D(h, t), solp) - M * solp - v +-- the second way is by listing the equations: +z := operator z +sys := [D(x t, t) = y t + z t + t, D(y t, t) = x t + z t, D(z t, t) = x t + y t] +solve(sys, [x, y, z], t).particular +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |