aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/puiseux.spad.pamphlet
diff options
context:
space:
mode:
Diffstat (limited to 'src/algebra/puiseux.spad.pamphlet')
-rw-r--r--src/algebra/puiseux.spad.pamphlet658
1 files changed, 658 insertions, 0 deletions
diff --git a/src/algebra/puiseux.spad.pamphlet b/src/algebra/puiseux.spad.pamphlet
new file mode 100644
index 00000000..3d1f8162
--- /dev/null
+++ b/src/algebra/puiseux.spad.pamphlet
@@ -0,0 +1,658 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/algebra puiseux.spad}
+\author{Clifton J. Williamson, Scott C. Morrison}
+\maketitle
+\begin{abstract}
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+\section{category UPXSCCA UnivariatePuiseuxSeriesConstructorCategory}
+<<category UPXSCCA UnivariatePuiseuxSeriesConstructorCategory>>=
+)abbrev category UPXSCCA UnivariatePuiseuxSeriesConstructorCategory
+++ Author: Clifton J. Williamson
+++ Date Created: 6 February 1990
+++ Date Last Updated: 22 March 1990
+++ Basic Operations:
+++ Related Domains:
+++ Also See:
+++ AMS Classifications:
+++ Keywords: series, Puiseux, Laurent
+++ Examples:
+++ References:
+++ Description:
+++ This is a category of univariate Puiseux series constructed
+++ from univariate Laurent series. A Puiseux series is represented
+++ by a pair \spad{[r,f(x)]}, where r is a positive rational number and
+++ \spad{f(x)} is a Laurent series. This pair represents the Puiseux
+++ series \spad{f(x^r)}.
+UnivariatePuiseuxSeriesConstructorCategory(Coef,ULS):_
+ Category == Definition where
+ Coef : Ring
+ ULS : UnivariateLaurentSeriesCategory Coef
+ I ==> Integer
+ RN ==> Fraction Integer
+
+ Definition ==> Join(UnivariatePuiseuxSeriesCategory(Coef),_
+ RetractableTo ULS) with
+ puiseux: (RN,ULS) -> %
+ ++ \spad{puiseux(r,f(x))} returns \spad{f(x^r)}.
+ rationalPower: % -> RN
+ ++ \spad{rationalPower(f(x))} returns r where the Puiseux series
+ ++ \spad{f(x) = g(x^r)}.
+ laurentRep : % -> ULS
+ ++ \spad{laurentRep(f(x))} returns \spad{g(x)} where the Puiseux series
+ ++ \spad{f(x) = g(x^r)} is represented by \spad{[r,g(x)]}.
+ degree: % -> RN
+ ++ \spad{degree(f(x))} returns the degree of the leading term of the
+ ++ Puiseux series \spad{f(x)}, which may have zero as a coefficient.
+ coerce: ULS -> %
+ ++ \spad{coerce(f(x))} converts the Laurent series \spad{f(x)} to a
+ ++ Puiseux series.
+ laurent: % -> ULS
+ ++ \spad{laurent(f(x))} converts the Puiseux series \spad{f(x)} to a
+ ++ Laurent series if possible. Error: if this is not possible.
+ laurentIfCan: % -> Union(ULS,"failed")
+ ++ \spad{laurentIfCan(f(x))} converts the Puiseux series \spad{f(x)}
+ ++ to a Laurent series if possible.
+ ++ If this is not possible, "failed" is returned.
+
+ add
+
+ zero? x == zero? laurentRep x
+ retract(x:%):ULS == laurent x
+ retractIfCan(x:%):Union(ULS,"failed") == laurentIfCan x
+
+@
+\section{domain UPXSCONS UnivariatePuiseuxSeriesConstructor}
+<<domain UPXSCONS UnivariatePuiseuxSeriesConstructor>>=
+)abbrev domain UPXSCONS UnivariatePuiseuxSeriesConstructor
+++ Author: Clifton J. Williamson
+++ Date Created: 9 May 1989
+++ Date Last Updated: 30 November 1994
+++ Basic Operations:
+++ Related Domains:
+++ Also See:
+++ AMS Classifications:
+++ Keywords: series, Puiseux, Laurent
+++ Examples:
+++ References:
+++ Description:
+++ This package enables one to construct a univariate Puiseux series
+++ domain from a univariate Laurent series domain. Univariate
+++ Puiseux series are represented by a pair \spad{[r,f(x)]}, where r is
+++ a positive rational number and \spad{f(x)} is a Laurent series.
+++ This pair represents the Puiseux series \spad{f(x^r)}.
+
+UnivariatePuiseuxSeriesConstructor(Coef,ULS):_
+ Exports == Implementation where
+ Coef : Ring
+ ULS : UnivariateLaurentSeriesCategory Coef
+ I ==> Integer
+ L ==> List
+ NNI ==> NonNegativeInteger
+ OUT ==> OutputForm
+ PI ==> PositiveInteger
+ RN ==> Fraction Integer
+ ST ==> Stream Coef
+ LTerm ==> Record(k:I,c:Coef)
+ PTerm ==> Record(k:RN,c:Coef)
+ ST2LP ==> StreamFunctions2(LTerm,PTerm)
+ ST2PL ==> StreamFunctions2(PTerm,LTerm)
+
+ Exports ==> UnivariatePuiseuxSeriesConstructorCategory(Coef,ULS)
+
+ Implementation ==> add
+
+--% representation
+
+ Rep := Record(expon:RN,lSeries:ULS)
+
+ getExpon: % -> RN
+ getULS : % -> ULS
+
+ getExpon pxs == pxs.expon
+ getULS pxs == pxs.lSeries
+
+--% creation and destruction
+
+ puiseux(n,ls) == [n,ls]
+ laurentRep x == getULS x
+ rationalPower x == getExpon x
+ degree x == getExpon(x) * degree(getULS(x))
+
+ 0 == puiseux(1,0)
+ 1 == puiseux(1,1)
+
+ monomial(c,k) ==
+ k = 0 => c :: %
+ k < 0 => puiseux(-k,monomial(c,-1))
+ puiseux(k,monomial(c,1))
+
+ coerce(ls:ULS) == puiseux(1,ls)
+ coerce(r:Coef) == r :: ULS :: %
+ coerce(i:I) == i :: Coef :: %
+
+ laurentIfCan upxs ==
+ r := getExpon upxs
+-- one? denom r =>
+ (denom r) = 1 =>
+ multiplyExponents(getULS upxs,numer(r) :: PI)
+ "failed"
+
+ laurent upxs ==
+ (uls := laurentIfCan upxs) case "failed" =>
+ error "laurent: Puiseux series has fractional powers"
+ uls :: ULS
+
+ multExp: (RN,LTerm) -> PTerm
+ multExp(r,lTerm) == [r * lTerm.k,lTerm.c]
+
+ terms upxs == map(multExp(getExpon upxs,#1),terms getULS upxs)$ST2LP
+
+ clearDen: (I,PTerm) -> LTerm
+ clearDen(n,lTerm) ==
+ (int := retractIfCan(n * lTerm.k)@Union(I,"failed")) case "failed" =>
+ error "series: inappropriate denominator"
+ [int :: I,lTerm.c]
+
+ series(n,stream) ==
+ str := map(clearDen(n,#1),stream)$ST2PL
+ puiseux(1/n,series str)
+
+--% normalizations
+
+ rewrite:(%,PI) -> %
+ rewrite(upxs,m) ==
+ -- rewrites a series in x**r as a series in x**(r/m)
+ puiseux((getExpon upxs)*(1/m),multiplyExponents(getULS upxs,m))
+
+ ratGcd: (RN,RN) -> RN
+ ratGcd(r1,r2) ==
+ -- if r1 = prod(p prime,p ** ep(r1)) and
+ -- if r2 = prod(p prime,p ** ep(r2)), then
+ -- ratGcd(r1,r2) = prod(p prime,p ** min(ep(r1),ep(r2)))
+ gcd(numer r1,numer r2) / lcm(denom r1,denom r2)
+
+ withNewExpon:(%,RN) -> %
+ withNewExpon(upxs,r) ==
+ rewrite(upxs,numer(getExpon(upxs)/r) pretend PI)
+
+--% predicates
+
+ upxs1 = upxs2 ==
+ r1 := getExpon upxs1; r2 := getExpon upxs2
+ ls1 := getULS upxs1; ls2 := getULS upxs2
+ (r1 = r2) => (ls1 = ls2)
+ r := ratGcd(r1,r2)
+ m1 := numer(getExpon(upxs1)/r) pretend PI
+ m2 := numer(getExpon(upxs2)/r) pretend PI
+ multiplyExponents(ls1,m1) = multiplyExponents(ls2,m2)
+
+ pole? upxs == pole? getULS upxs
+
+--% arithmetic
+
+ applyFcn:((ULS,ULS) -> ULS,%,%) -> %
+ applyFcn(op,pxs1,pxs2) ==
+ r1 := getExpon pxs1; r2 := getExpon pxs2
+ ls1 := getULS pxs1; ls2 := getULS pxs2
+ (r1 = r2) => puiseux(r1,op(ls1,ls2))
+ r := ratGcd(r1,r2)
+ m1 := numer(getExpon(pxs1)/r) pretend PI
+ m2 := numer(getExpon(pxs2)/r) pretend PI
+ puiseux(r,op(multiplyExponents(ls1,m1),multiplyExponents(ls2,m2)))
+
+ pxs1 + pxs2 == applyFcn(#1 +$ULS #2,pxs1,pxs2)
+ pxs1 - pxs2 == applyFcn(#1 -$ULS #2,pxs1,pxs2)
+ pxs1:% * pxs2:% == applyFcn(#1 *$ULS #2,pxs1,pxs2)
+
+ pxs:% ** n:NNI == puiseux(getExpon pxs,getULS(pxs)**n)
+
+ recip pxs ==
+ rec := recip getULS pxs
+ rec case "failed" => "failed"
+ puiseux(getExpon pxs,rec :: ULS)
+
+ RATALG : Boolean := Coef has Algebra(Fraction Integer)
+
+ elt(upxs1:%,upxs2:%) ==
+ uls1 := laurentRep upxs1; uls2 := laurentRep upxs2
+ r1 := rationalPower upxs1; r2 := rationalPower upxs2
+ (n := retractIfCan(r1)@Union(Integer,"failed")) case Integer =>
+ puiseux(r2,uls1(uls2 ** r1))
+ RATALG =>
+ if zero? (coef := coefficient(uls2,deg := degree uls2)) then
+ deg := order(uls2,deg + 1000)
+ zero? (coef := coefficient(uls2,deg)) =>
+ error "elt: series with many leading zero coefficients"
+ -- a fractional power of a Laurent series may not be defined:
+ -- if f(x) = c * x**n + ..., then f(x) ** (p/q) will be defined
+ -- only if q divides n
+ b := lcm(denom r1,deg); c := b quo deg
+ mon : ULS := monomial(1,c)
+ uls2 := elt(uls2,mon) ** r1
+ puiseux(r2*(1/c),elt(uls1,uls2))
+ error "elt: rational powers not available for this coefficient domain"
+
+ if Coef has "**": (Coef,Integer) -> Coef and
+ Coef has "**": (Coef, RN) -> Coef then
+ eval(upxs:%,a:Coef) == eval(getULS upxs,a ** getExpon(upxs))
+
+ if Coef has Field then
+
+ pxs1:% / pxs2:% == applyFcn(#1 /$ULS #2,pxs1,pxs2)
+
+ inv upxs ==
+ (invUpxs := recip upxs) case "failed" =>
+ error "inv: multiplicative inverse does not exist"
+ invUpxs :: %
+
+--% values
+
+ variable upxs == variable getULS upxs
+ center upxs == center getULS upxs
+
+ coefficient(upxs,rn) ==
+-- one? denom(n := rn / getExpon upxs) =>
+ (denom(n := rn / getExpon upxs)) = 1 =>
+ coefficient(getULS upxs,numer n)
+ 0
+
+ elt(upxs:%,rn:RN) == coefficient(upxs,rn)
+
+--% other functions
+
+ roundDown: RN -> I
+ roundDown rn ==
+ -- returns the largest integer <= rn
+ (den := denom rn) = 1 => numer rn
+ n := (num := numer rn) quo den
+ positive?(num) => n
+ n - 1
+
+ roundUp: RN -> I
+ roundUp rn ==
+ -- returns the smallest integer >= rn
+ (den := denom rn) = 1 => numer rn
+ n := (num := numer rn) quo den
+ positive?(num) => n + 1
+ n
+
+ order upxs == getExpon upxs * order getULS upxs
+ order(upxs,r) ==
+ e := getExpon upxs
+ ord := order(getULS upxs, n := roundDown(r / e))
+ ord = n => r
+ ord * e
+
+ truncate(upxs,r) ==
+ e := getExpon upxs
+ puiseux(e,truncate(getULS upxs,roundDown(r / e)))
+
+ truncate(upxs,r1,r2) ==
+ e := getExpon upxs
+ puiseux(e,truncate(getULS upxs,roundUp(r1 / e),roundDown(r2 / e)))
+
+ complete upxs == puiseux(getExpon upxs,complete getULS upxs)
+ extend(upxs,r) ==
+ e := getExpon upxs
+ puiseux(e,extend(getULS upxs,roundDown(r / e)))
+
+ map(fcn,upxs) == puiseux(getExpon upxs,map(fcn,getULS upxs))
+
+ characteristic() == characteristic()$Coef
+
+ -- multiplyCoefficients(f,upxs) ==
+ -- r := getExpon upxs
+ -- puiseux(r,multiplyCoefficients(f(#1 * r),getULS upxs))
+
+ multiplyExponents(upxs:%,n:RN) ==
+ puiseux(n * getExpon(upxs),getULS upxs)
+ multiplyExponents(upxs:%,n:PI) ==
+ puiseux(n * getExpon(upxs),getULS upxs)
+
+ if Coef has "*": (Fraction Integer, Coef) -> Coef then
+
+ differentiate upxs ==
+ r := getExpon upxs
+ puiseux(r,differentiate getULS upxs) * monomial(r :: Coef,r-1)
+
+ if Coef has PartialDifferentialRing(Symbol) then
+
+ differentiate(upxs:%,s:Symbol) ==
+ (s = variable(upxs)) => differentiate upxs
+ dcds := differentiate(center upxs,s)
+ map(differentiate(#1,s),upxs) - dcds*differentiate(upxs)
+
+ if Coef has Algebra Fraction Integer then
+
+ coerce(r:RN) == r :: Coef :: %
+
+ ratInv: RN -> Coef
+ ratInv r ==
+ zero? r => 1
+ inv(r) :: Coef
+
+ integrate upxs ==
+ not zero? coefficient(upxs,-1) =>
+ error "integrate: series has term of order -1"
+ r := getExpon upxs
+ uls := getULS upxs
+ uls := multiplyCoefficients(ratInv(#1 * r + 1),uls)
+ monomial(1,1) * puiseux(r,uls)
+
+ if Coef has integrate: (Coef,Symbol) -> Coef and _
+ Coef has variables: Coef -> List Symbol then
+
+ integrate(upxs:%,s:Symbol) ==
+ (s = variable(upxs)) => integrate upxs
+ not entry?(s,variables center upxs) => map(integrate(#1,s),upxs)
+ error "integrate: center is a function of variable of integration"
+
+ if Coef has TranscendentalFunctionCategory and _
+ Coef has PrimitiveFunctionCategory and _
+ Coef has AlgebraicallyClosedFunctionSpace Integer then
+
+ integrateWithOneAnswer: (Coef,Symbol) -> Coef
+ integrateWithOneAnswer(f,s) ==
+ res := integrate(f,s)$FunctionSpaceIntegration(I,Coef)
+ res case Coef => res :: Coef
+ first(res :: List Coef)
+
+ integrate(upxs:%,s:Symbol) ==
+ (s = variable(upxs)) => integrate upxs
+ not entry?(s,variables center upxs) =>
+ map(integrateWithOneAnswer(#1,s),upxs)
+ error "integrate: center is a function of variable of integration"
+
+ if Coef has Field then
+ (upxs:%) ** (q:RN) ==
+ num := numer q; den := denom q
+-- one? den => upxs ** num
+ den = 1 => upxs ** num
+ r := rationalPower upxs; uls := laurentRep upxs
+ deg := degree uls
+ if zero?(coef := coefficient(uls,deg)) then
+ deg := order(uls,deg + 1000)
+ zero?(coef := coefficient(uls,deg)) =>
+ error "power of series with many leading zero coefficients"
+ ulsPow := (uls * monomial(1,-deg)$ULS) ** q
+ puiseux(r,ulsPow) * monomial(1,deg*q*r)
+
+ applyUnary: (ULS -> ULS,%) -> %
+ applyUnary(fcn,upxs) ==
+ puiseux(rationalPower upxs,fcn laurentRep upxs)
+
+ exp upxs == applyUnary(exp,upxs)
+ log upxs == applyUnary(log,upxs)
+ sin upxs == applyUnary(sin,upxs)
+ cos upxs == applyUnary(cos,upxs)
+ tan upxs == applyUnary(tan,upxs)
+ cot upxs == applyUnary(cot,upxs)
+ sec upxs == applyUnary(sec,upxs)
+ csc upxs == applyUnary(csc,upxs)
+ asin upxs == applyUnary(asin,upxs)
+ acos upxs == applyUnary(acos,upxs)
+ atan upxs == applyUnary(atan,upxs)
+ acot upxs == applyUnary(acot,upxs)
+ asec upxs == applyUnary(asec,upxs)
+ acsc upxs == applyUnary(acsc,upxs)
+ sinh upxs == applyUnary(sinh,upxs)
+ cosh upxs == applyUnary(cosh,upxs)
+ tanh upxs == applyUnary(tanh,upxs)
+ coth upxs == applyUnary(coth,upxs)
+ sech upxs == applyUnary(sech,upxs)
+ csch upxs == applyUnary(csch,upxs)
+ asinh upxs == applyUnary(asinh,upxs)
+ acosh upxs == applyUnary(acosh,upxs)
+ atanh upxs == applyUnary(atanh,upxs)
+ acoth upxs == applyUnary(acoth,upxs)
+ asech upxs == applyUnary(asech,upxs)
+ acsch upxs == applyUnary(acsch,upxs)
+
+@
+\section{domain UPXS UnivariatePuiseuxSeries}
+<<domain UPXS UnivariatePuiseuxSeries>>=
+)abbrev domain UPXS UnivariatePuiseuxSeries
+++ Author: Clifton J. Williamson
+++ Date Created: 28 January 1990
+++ Date Last Updated: 21 September 1993
+++ Basic Operations:
+++ Related Domains:
+++ Also See:
+++ AMS Classifications:
+++ Keywords: series, Puiseux
+++ Examples:
+++ References:
+++ Description: Dense Puiseux series in one variable
+++ \spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux
+++ series in one variable with coefficients in an arbitrary ring. The
+++ parameters of the type specify the coefficient ring, the power series
+++ variable, and the center of the power series expansion. For example,
+++ \spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in
+++ \spad{(x - 3)} with \spadtype{Integer} coefficients.
+UnivariatePuiseuxSeries(Coef,var,cen): Exports == Implementation where
+ Coef : Ring
+ var : Symbol
+ cen : Coef
+ I ==> Integer
+ L ==> List
+ NNI ==> NonNegativeInteger
+ OUT ==> OutputForm
+ RN ==> Fraction Integer
+ ST ==> Stream Coef
+ UTS ==> UnivariateTaylorSeries(Coef,var,cen)
+ ULS ==> UnivariateLaurentSeries(Coef,var,cen)
+
+ Exports ==> Join(UnivariatePuiseuxSeriesConstructorCategory(Coef,ULS),_
+ RetractableTo UTS) with
+ coerce: Variable(var) -> %
+ ++ coerce(var) converts the series variable \spad{var} into a
+ ++ Puiseux series.
+ differentiate: (%,Variable(var)) -> %
+ ++ \spad{differentiate(f(x),x)} returns the derivative of
+ ++ \spad{f(x)} with respect to \spad{x}.
+ if Coef has Algebra Fraction Integer then
+ integrate: (%,Variable(var)) -> %
+ ++ \spad{integrate(f(x))} returns an anti-derivative of the power
+ ++ series \spad{f(x)} with constant coefficient 0.
+ ++ We may integrate a series when we can divide coefficients
+ ++ by integers.
+
+ Implementation ==> UnivariatePuiseuxSeriesConstructor(Coef,ULS) add
+
+ Rep := Record(expon:RN,lSeries:ULS)
+
+ getExpon: % -> RN
+ getExpon pxs == pxs.expon
+
+ variable upxs == var
+ center upxs == cen
+
+ coerce(uts:UTS) == uts :: ULS :: %
+
+ retractIfCan(upxs:%):Union(UTS,"failed") ==
+ (ulsIfCan := retractIfCan(upxs)@Union(ULS,"failed")) case "failed" =>
+ "failed"
+ retractIfCan(ulsIfCan :: ULS)
+
+ --retract(upxs:%):UTS ==
+ --(ulsIfCan := retractIfCan(upxs)@Union(ULS,"failed")) case "failed" =>
+ --error "retractIfCan: series has fractional exponents"
+ --utsIfCan := retractIfCan(ulsIfCan :: ULS)@Union(UTS,"failed")
+ --utsIfCan case "failed" =>
+ --error "retractIfCan: series has negative exponents"
+ --utsIfCan :: UTS
+
+ coerce(v:Variable(var)) ==
+ zero? cen => monomial(1,1)
+ monomial(1,1) + monomial(cen,0)
+
+ if Coef has "*": (Fraction Integer, Coef) -> Coef then
+ differentiate(upxs:%,v:Variable(var)) == differentiate upxs
+
+ if Coef has Algebra Fraction Integer then
+ integrate(upxs:%,v:Variable(var)) == integrate upxs
+
+ if Coef has coerce: Symbol -> Coef then
+ if Coef has "**": (Coef,RN) -> Coef then
+
+ roundDown: RN -> I
+ roundDown rn ==
+ -- returns the largest integer <= rn
+ (den := denom rn) = 1 => numer rn
+ n := (num := numer rn) quo den
+ positive?(num) => n
+ n - 1
+
+ stToCoef: (ST,Coef,NNI,NNI) -> Coef
+ stToCoef(st,term,n,n0) ==
+ (n > n0) or (empty? st) => 0
+ frst(st) * term ** n + stToCoef(rst st,term,n + 1,n0)
+
+ approximateLaurent: (ULS,Coef,I) -> Coef
+ approximateLaurent(x,term,n) ==
+ (m := n - (e := degree x)) < 0 => 0
+ app := stToCoef(coefficients taylorRep x,term,0,m :: NNI)
+ zero? e => app
+ app * term ** (e :: RN)
+
+ approximate(x,r) ==
+ e := rationalPower(x)
+ term := ((variable(x) :: Coef) - center(x)) ** e
+ approximateLaurent(laurentRep x,term,roundDown(r / e))
+
+ termOutput:(RN,Coef,OUT) -> OUT
+ termOutput(k,c,vv) ==
+ -- creates a term c * vv ** k
+ k = 0 => c :: OUT
+ mon :=
+ k = 1 => vv
+ vv ** (k :: OUT)
+ c = 1 => mon
+ c = -1 => -mon
+ (c :: OUT) * mon
+
+ showAll?:() -> Boolean
+ -- check a global Lisp variable
+ showAll?() == true
+
+ termsToOutputForm:(RN,RN,ST,OUT) -> OUT
+ termsToOutputForm(m,rat,uu,xxx) ==
+ l : L OUT := empty()
+ empty? uu => 0 :: OUT
+ n : NNI; count : NNI := _$streamCount$Lisp
+ for n in 0..count while not empty? uu repeat
+ if frst(uu) ^= 0 then
+ l := concat(termOutput((n :: I) * rat + m,frst uu,xxx),l)
+ uu := rst uu
+ if showAll?() then
+ for n in (count + 1).. while explicitEntries? uu and _
+ not eq?(uu,rst uu) repeat
+ if frst(uu) ^= 0 then
+ l := concat(termOutput((n :: I) * rat + m,frst uu,xxx),l)
+ uu := rst uu
+ l :=
+ explicitlyEmpty? uu => l
+ eq?(uu,rst uu) and frst uu = 0 => l
+ concat(prefix("O" :: OUT,[xxx ** (((n::I) * rat + m) :: OUT)]),l)
+ empty? l => 0 :: OUT
+ reduce("+",reverse_! l)
+
+ coerce(upxs:%):OUT ==
+ rat := getExpon upxs; uls := laurentRep upxs
+ count : I := _$streamCount$Lisp
+ uls := removeZeroes(_$streamCount$Lisp,uls)
+ m : RN := (degree uls) * rat
+ p := coefficients taylorRep uls
+ xxx :=
+ zero? cen => var :: OUT
+ paren(var :: OUT - cen :: OUT)
+ termsToOutputForm(m,rat,p,xxx)
+
+@
+\section{package UPXS2 UnivariatePuiseuxSeriesFunctions2}
+<<package UPXS2 UnivariatePuiseuxSeriesFunctions2>>=
+)abbrev package UPXS2 UnivariatePuiseuxSeriesFunctions2
+++ Mapping package for univariate Puiseux series
+++ Author: Scott C. Morrison
+++ Date Created: 5 April 1991
+++ Date Last Updated: 5 April 1991
+++ Keywords: Puiseux series, map
+++ Examples:
+++ References:
+++ Description:
+++ Mapping package for univariate Puiseux series.
+++ This package allows one to apply a function to the coefficients of
+++ a univariate Puiseux series.
+UnivariatePuiseuxSeriesFunctions2(Coef1,Coef2,var1,var2,cen1,cen2):_
+ Exports == Implementation where
+ Coef1 : Ring
+ Coef2 : Ring
+ var1: Symbol
+ var2: Symbol
+ cen1: Coef1
+ cen2: Coef2
+ UPS1 ==> UnivariatePuiseuxSeries(Coef1, var1, cen1)
+ UPS2 ==> UnivariatePuiseuxSeries(Coef2, var2, cen2)
+ ULSP2 ==> UnivariateLaurentSeriesFunctions2(Coef1, Coef2, var1, var2, cen1, cen2)
+
+ Exports ==> with
+ map: (Coef1 -> Coef2,UPS1) -> UPS2
+ ++ \spad{map(f,g(x))} applies the map f to the coefficients of the
+ ++ Puiseux series \spad{g(x)}.
+
+ Implementation ==> add
+
+ map(f,ups) == puiseux(rationalPower ups, map(f, laurentRep ups)$ULSP2)
+
+@
+\section{License}
+<<license>>=
+--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
+--All rights reserved.
+--
+--Redistribution and use in source and binary forms, with or without
+--modification, are permitted provided that the following conditions are
+--met:
+--
+-- - Redistributions of source code must retain the above copyright
+-- notice, this list of conditions and the following disclaimer.
+--
+-- - Redistributions in binary form must reproduce the above copyright
+-- notice, this list of conditions and the following disclaimer in
+-- the documentation and/or other materials provided with the
+-- distribution.
+--
+-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
+-- names of its contributors may be used to endorse or promote products
+-- derived from this software without specific prior written permission.
+--
+--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+@
+<<*>>=
+<<license>>
+
+<<category UPXSCCA UnivariatePuiseuxSeriesConstructorCategory>>
+<<domain UPXSCONS UnivariatePuiseuxSeriesConstructor>>
+<<domain UPXS UnivariatePuiseuxSeries>>
+<<package UPXS2 UnivariatePuiseuxSeriesFunctions2>>
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} nothing
+\end{thebibliography}
+\end{document}