diff options
Diffstat (limited to 'src/algebra/puiseux.spad.pamphlet')
-rw-r--r-- | src/algebra/puiseux.spad.pamphlet | 658 |
1 files changed, 658 insertions, 0 deletions
diff --git a/src/algebra/puiseux.spad.pamphlet b/src/algebra/puiseux.spad.pamphlet new file mode 100644 index 00000000..3d1f8162 --- /dev/null +++ b/src/algebra/puiseux.spad.pamphlet @@ -0,0 +1,658 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/algebra puiseux.spad} +\author{Clifton J. Williamson, Scott C. Morrison} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{category UPXSCCA UnivariatePuiseuxSeriesConstructorCategory} +<<category UPXSCCA UnivariatePuiseuxSeriesConstructorCategory>>= +)abbrev category UPXSCCA UnivariatePuiseuxSeriesConstructorCategory +++ Author: Clifton J. Williamson +++ Date Created: 6 February 1990 +++ Date Last Updated: 22 March 1990 +++ Basic Operations: +++ Related Domains: +++ Also See: +++ AMS Classifications: +++ Keywords: series, Puiseux, Laurent +++ Examples: +++ References: +++ Description: +++ This is a category of univariate Puiseux series constructed +++ from univariate Laurent series. A Puiseux series is represented +++ by a pair \spad{[r,f(x)]}, where r is a positive rational number and +++ \spad{f(x)} is a Laurent series. This pair represents the Puiseux +++ series \spad{f(x^r)}. +UnivariatePuiseuxSeriesConstructorCategory(Coef,ULS):_ + Category == Definition where + Coef : Ring + ULS : UnivariateLaurentSeriesCategory Coef + I ==> Integer + RN ==> Fraction Integer + + Definition ==> Join(UnivariatePuiseuxSeriesCategory(Coef),_ + RetractableTo ULS) with + puiseux: (RN,ULS) -> % + ++ \spad{puiseux(r,f(x))} returns \spad{f(x^r)}. + rationalPower: % -> RN + ++ \spad{rationalPower(f(x))} returns r where the Puiseux series + ++ \spad{f(x) = g(x^r)}. + laurentRep : % -> ULS + ++ \spad{laurentRep(f(x))} returns \spad{g(x)} where the Puiseux series + ++ \spad{f(x) = g(x^r)} is represented by \spad{[r,g(x)]}. + degree: % -> RN + ++ \spad{degree(f(x))} returns the degree of the leading term of the + ++ Puiseux series \spad{f(x)}, which may have zero as a coefficient. + coerce: ULS -> % + ++ \spad{coerce(f(x))} converts the Laurent series \spad{f(x)} to a + ++ Puiseux series. + laurent: % -> ULS + ++ \spad{laurent(f(x))} converts the Puiseux series \spad{f(x)} to a + ++ Laurent series if possible. Error: if this is not possible. + laurentIfCan: % -> Union(ULS,"failed") + ++ \spad{laurentIfCan(f(x))} converts the Puiseux series \spad{f(x)} + ++ to a Laurent series if possible. + ++ If this is not possible, "failed" is returned. + + add + + zero? x == zero? laurentRep x + retract(x:%):ULS == laurent x + retractIfCan(x:%):Union(ULS,"failed") == laurentIfCan x + +@ +\section{domain UPXSCONS UnivariatePuiseuxSeriesConstructor} +<<domain UPXSCONS UnivariatePuiseuxSeriesConstructor>>= +)abbrev domain UPXSCONS UnivariatePuiseuxSeriesConstructor +++ Author: Clifton J. Williamson +++ Date Created: 9 May 1989 +++ Date Last Updated: 30 November 1994 +++ Basic Operations: +++ Related Domains: +++ Also See: +++ AMS Classifications: +++ Keywords: series, Puiseux, Laurent +++ Examples: +++ References: +++ Description: +++ This package enables one to construct a univariate Puiseux series +++ domain from a univariate Laurent series domain. Univariate +++ Puiseux series are represented by a pair \spad{[r,f(x)]}, where r is +++ a positive rational number and \spad{f(x)} is a Laurent series. +++ This pair represents the Puiseux series \spad{f(x^r)}. + +UnivariatePuiseuxSeriesConstructor(Coef,ULS):_ + Exports == Implementation where + Coef : Ring + ULS : UnivariateLaurentSeriesCategory Coef + I ==> Integer + L ==> List + NNI ==> NonNegativeInteger + OUT ==> OutputForm + PI ==> PositiveInteger + RN ==> Fraction Integer + ST ==> Stream Coef + LTerm ==> Record(k:I,c:Coef) + PTerm ==> Record(k:RN,c:Coef) + ST2LP ==> StreamFunctions2(LTerm,PTerm) + ST2PL ==> StreamFunctions2(PTerm,LTerm) + + Exports ==> UnivariatePuiseuxSeriesConstructorCategory(Coef,ULS) + + Implementation ==> add + +--% representation + + Rep := Record(expon:RN,lSeries:ULS) + + getExpon: % -> RN + getULS : % -> ULS + + getExpon pxs == pxs.expon + getULS pxs == pxs.lSeries + +--% creation and destruction + + puiseux(n,ls) == [n,ls] + laurentRep x == getULS x + rationalPower x == getExpon x + degree x == getExpon(x) * degree(getULS(x)) + + 0 == puiseux(1,0) + 1 == puiseux(1,1) + + monomial(c,k) == + k = 0 => c :: % + k < 0 => puiseux(-k,monomial(c,-1)) + puiseux(k,monomial(c,1)) + + coerce(ls:ULS) == puiseux(1,ls) + coerce(r:Coef) == r :: ULS :: % + coerce(i:I) == i :: Coef :: % + + laurentIfCan upxs == + r := getExpon upxs +-- one? denom r => + (denom r) = 1 => + multiplyExponents(getULS upxs,numer(r) :: PI) + "failed" + + laurent upxs == + (uls := laurentIfCan upxs) case "failed" => + error "laurent: Puiseux series has fractional powers" + uls :: ULS + + multExp: (RN,LTerm) -> PTerm + multExp(r,lTerm) == [r * lTerm.k,lTerm.c] + + terms upxs == map(multExp(getExpon upxs,#1),terms getULS upxs)$ST2LP + + clearDen: (I,PTerm) -> LTerm + clearDen(n,lTerm) == + (int := retractIfCan(n * lTerm.k)@Union(I,"failed")) case "failed" => + error "series: inappropriate denominator" + [int :: I,lTerm.c] + + series(n,stream) == + str := map(clearDen(n,#1),stream)$ST2PL + puiseux(1/n,series str) + +--% normalizations + + rewrite:(%,PI) -> % + rewrite(upxs,m) == + -- rewrites a series in x**r as a series in x**(r/m) + puiseux((getExpon upxs)*(1/m),multiplyExponents(getULS upxs,m)) + + ratGcd: (RN,RN) -> RN + ratGcd(r1,r2) == + -- if r1 = prod(p prime,p ** ep(r1)) and + -- if r2 = prod(p prime,p ** ep(r2)), then + -- ratGcd(r1,r2) = prod(p prime,p ** min(ep(r1),ep(r2))) + gcd(numer r1,numer r2) / lcm(denom r1,denom r2) + + withNewExpon:(%,RN) -> % + withNewExpon(upxs,r) == + rewrite(upxs,numer(getExpon(upxs)/r) pretend PI) + +--% predicates + + upxs1 = upxs2 == + r1 := getExpon upxs1; r2 := getExpon upxs2 + ls1 := getULS upxs1; ls2 := getULS upxs2 + (r1 = r2) => (ls1 = ls2) + r := ratGcd(r1,r2) + m1 := numer(getExpon(upxs1)/r) pretend PI + m2 := numer(getExpon(upxs2)/r) pretend PI + multiplyExponents(ls1,m1) = multiplyExponents(ls2,m2) + + pole? upxs == pole? getULS upxs + +--% arithmetic + + applyFcn:((ULS,ULS) -> ULS,%,%) -> % + applyFcn(op,pxs1,pxs2) == + r1 := getExpon pxs1; r2 := getExpon pxs2 + ls1 := getULS pxs1; ls2 := getULS pxs2 + (r1 = r2) => puiseux(r1,op(ls1,ls2)) + r := ratGcd(r1,r2) + m1 := numer(getExpon(pxs1)/r) pretend PI + m2 := numer(getExpon(pxs2)/r) pretend PI + puiseux(r,op(multiplyExponents(ls1,m1),multiplyExponents(ls2,m2))) + + pxs1 + pxs2 == applyFcn(#1 +$ULS #2,pxs1,pxs2) + pxs1 - pxs2 == applyFcn(#1 -$ULS #2,pxs1,pxs2) + pxs1:% * pxs2:% == applyFcn(#1 *$ULS #2,pxs1,pxs2) + + pxs:% ** n:NNI == puiseux(getExpon pxs,getULS(pxs)**n) + + recip pxs == + rec := recip getULS pxs + rec case "failed" => "failed" + puiseux(getExpon pxs,rec :: ULS) + + RATALG : Boolean := Coef has Algebra(Fraction Integer) + + elt(upxs1:%,upxs2:%) == + uls1 := laurentRep upxs1; uls2 := laurentRep upxs2 + r1 := rationalPower upxs1; r2 := rationalPower upxs2 + (n := retractIfCan(r1)@Union(Integer,"failed")) case Integer => + puiseux(r2,uls1(uls2 ** r1)) + RATALG => + if zero? (coef := coefficient(uls2,deg := degree uls2)) then + deg := order(uls2,deg + 1000) + zero? (coef := coefficient(uls2,deg)) => + error "elt: series with many leading zero coefficients" + -- a fractional power of a Laurent series may not be defined: + -- if f(x) = c * x**n + ..., then f(x) ** (p/q) will be defined + -- only if q divides n + b := lcm(denom r1,deg); c := b quo deg + mon : ULS := monomial(1,c) + uls2 := elt(uls2,mon) ** r1 + puiseux(r2*(1/c),elt(uls1,uls2)) + error "elt: rational powers not available for this coefficient domain" + + if Coef has "**": (Coef,Integer) -> Coef and + Coef has "**": (Coef, RN) -> Coef then + eval(upxs:%,a:Coef) == eval(getULS upxs,a ** getExpon(upxs)) + + if Coef has Field then + + pxs1:% / pxs2:% == applyFcn(#1 /$ULS #2,pxs1,pxs2) + + inv upxs == + (invUpxs := recip upxs) case "failed" => + error "inv: multiplicative inverse does not exist" + invUpxs :: % + +--% values + + variable upxs == variable getULS upxs + center upxs == center getULS upxs + + coefficient(upxs,rn) == +-- one? denom(n := rn / getExpon upxs) => + (denom(n := rn / getExpon upxs)) = 1 => + coefficient(getULS upxs,numer n) + 0 + + elt(upxs:%,rn:RN) == coefficient(upxs,rn) + +--% other functions + + roundDown: RN -> I + roundDown rn == + -- returns the largest integer <= rn + (den := denom rn) = 1 => numer rn + n := (num := numer rn) quo den + positive?(num) => n + n - 1 + + roundUp: RN -> I + roundUp rn == + -- returns the smallest integer >= rn + (den := denom rn) = 1 => numer rn + n := (num := numer rn) quo den + positive?(num) => n + 1 + n + + order upxs == getExpon upxs * order getULS upxs + order(upxs,r) == + e := getExpon upxs + ord := order(getULS upxs, n := roundDown(r / e)) + ord = n => r + ord * e + + truncate(upxs,r) == + e := getExpon upxs + puiseux(e,truncate(getULS upxs,roundDown(r / e))) + + truncate(upxs,r1,r2) == + e := getExpon upxs + puiseux(e,truncate(getULS upxs,roundUp(r1 / e),roundDown(r2 / e))) + + complete upxs == puiseux(getExpon upxs,complete getULS upxs) + extend(upxs,r) == + e := getExpon upxs + puiseux(e,extend(getULS upxs,roundDown(r / e))) + + map(fcn,upxs) == puiseux(getExpon upxs,map(fcn,getULS upxs)) + + characteristic() == characteristic()$Coef + + -- multiplyCoefficients(f,upxs) == + -- r := getExpon upxs + -- puiseux(r,multiplyCoefficients(f(#1 * r),getULS upxs)) + + multiplyExponents(upxs:%,n:RN) == + puiseux(n * getExpon(upxs),getULS upxs) + multiplyExponents(upxs:%,n:PI) == + puiseux(n * getExpon(upxs),getULS upxs) + + if Coef has "*": (Fraction Integer, Coef) -> Coef then + + differentiate upxs == + r := getExpon upxs + puiseux(r,differentiate getULS upxs) * monomial(r :: Coef,r-1) + + if Coef has PartialDifferentialRing(Symbol) then + + differentiate(upxs:%,s:Symbol) == + (s = variable(upxs)) => differentiate upxs + dcds := differentiate(center upxs,s) + map(differentiate(#1,s),upxs) - dcds*differentiate(upxs) + + if Coef has Algebra Fraction Integer then + + coerce(r:RN) == r :: Coef :: % + + ratInv: RN -> Coef + ratInv r == + zero? r => 1 + inv(r) :: Coef + + integrate upxs == + not zero? coefficient(upxs,-1) => + error "integrate: series has term of order -1" + r := getExpon upxs + uls := getULS upxs + uls := multiplyCoefficients(ratInv(#1 * r + 1),uls) + monomial(1,1) * puiseux(r,uls) + + if Coef has integrate: (Coef,Symbol) -> Coef and _ + Coef has variables: Coef -> List Symbol then + + integrate(upxs:%,s:Symbol) == + (s = variable(upxs)) => integrate upxs + not entry?(s,variables center upxs) => map(integrate(#1,s),upxs) + error "integrate: center is a function of variable of integration" + + if Coef has TranscendentalFunctionCategory and _ + Coef has PrimitiveFunctionCategory and _ + Coef has AlgebraicallyClosedFunctionSpace Integer then + + integrateWithOneAnswer: (Coef,Symbol) -> Coef + integrateWithOneAnswer(f,s) == + res := integrate(f,s)$FunctionSpaceIntegration(I,Coef) + res case Coef => res :: Coef + first(res :: List Coef) + + integrate(upxs:%,s:Symbol) == + (s = variable(upxs)) => integrate upxs + not entry?(s,variables center upxs) => + map(integrateWithOneAnswer(#1,s),upxs) + error "integrate: center is a function of variable of integration" + + if Coef has Field then + (upxs:%) ** (q:RN) == + num := numer q; den := denom q +-- one? den => upxs ** num + den = 1 => upxs ** num + r := rationalPower upxs; uls := laurentRep upxs + deg := degree uls + if zero?(coef := coefficient(uls,deg)) then + deg := order(uls,deg + 1000) + zero?(coef := coefficient(uls,deg)) => + error "power of series with many leading zero coefficients" + ulsPow := (uls * monomial(1,-deg)$ULS) ** q + puiseux(r,ulsPow) * monomial(1,deg*q*r) + + applyUnary: (ULS -> ULS,%) -> % + applyUnary(fcn,upxs) == + puiseux(rationalPower upxs,fcn laurentRep upxs) + + exp upxs == applyUnary(exp,upxs) + log upxs == applyUnary(log,upxs) + sin upxs == applyUnary(sin,upxs) + cos upxs == applyUnary(cos,upxs) + tan upxs == applyUnary(tan,upxs) + cot upxs == applyUnary(cot,upxs) + sec upxs == applyUnary(sec,upxs) + csc upxs == applyUnary(csc,upxs) + asin upxs == applyUnary(asin,upxs) + acos upxs == applyUnary(acos,upxs) + atan upxs == applyUnary(atan,upxs) + acot upxs == applyUnary(acot,upxs) + asec upxs == applyUnary(asec,upxs) + acsc upxs == applyUnary(acsc,upxs) + sinh upxs == applyUnary(sinh,upxs) + cosh upxs == applyUnary(cosh,upxs) + tanh upxs == applyUnary(tanh,upxs) + coth upxs == applyUnary(coth,upxs) + sech upxs == applyUnary(sech,upxs) + csch upxs == applyUnary(csch,upxs) + asinh upxs == applyUnary(asinh,upxs) + acosh upxs == applyUnary(acosh,upxs) + atanh upxs == applyUnary(atanh,upxs) + acoth upxs == applyUnary(acoth,upxs) + asech upxs == applyUnary(asech,upxs) + acsch upxs == applyUnary(acsch,upxs) + +@ +\section{domain UPXS UnivariatePuiseuxSeries} +<<domain UPXS UnivariatePuiseuxSeries>>= +)abbrev domain UPXS UnivariatePuiseuxSeries +++ Author: Clifton J. Williamson +++ Date Created: 28 January 1990 +++ Date Last Updated: 21 September 1993 +++ Basic Operations: +++ Related Domains: +++ Also See: +++ AMS Classifications: +++ Keywords: series, Puiseux +++ Examples: +++ References: +++ Description: Dense Puiseux series in one variable +++ \spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux +++ series in one variable with coefficients in an arbitrary ring. The +++ parameters of the type specify the coefficient ring, the power series +++ variable, and the center of the power series expansion. For example, +++ \spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in +++ \spad{(x - 3)} with \spadtype{Integer} coefficients. +UnivariatePuiseuxSeries(Coef,var,cen): Exports == Implementation where + Coef : Ring + var : Symbol + cen : Coef + I ==> Integer + L ==> List + NNI ==> NonNegativeInteger + OUT ==> OutputForm + RN ==> Fraction Integer + ST ==> Stream Coef + UTS ==> UnivariateTaylorSeries(Coef,var,cen) + ULS ==> UnivariateLaurentSeries(Coef,var,cen) + + Exports ==> Join(UnivariatePuiseuxSeriesConstructorCategory(Coef,ULS),_ + RetractableTo UTS) with + coerce: Variable(var) -> % + ++ coerce(var) converts the series variable \spad{var} into a + ++ Puiseux series. + differentiate: (%,Variable(var)) -> % + ++ \spad{differentiate(f(x),x)} returns the derivative of + ++ \spad{f(x)} with respect to \spad{x}. + if Coef has Algebra Fraction Integer then + integrate: (%,Variable(var)) -> % + ++ \spad{integrate(f(x))} returns an anti-derivative of the power + ++ series \spad{f(x)} with constant coefficient 0. + ++ We may integrate a series when we can divide coefficients + ++ by integers. + + Implementation ==> UnivariatePuiseuxSeriesConstructor(Coef,ULS) add + + Rep := Record(expon:RN,lSeries:ULS) + + getExpon: % -> RN + getExpon pxs == pxs.expon + + variable upxs == var + center upxs == cen + + coerce(uts:UTS) == uts :: ULS :: % + + retractIfCan(upxs:%):Union(UTS,"failed") == + (ulsIfCan := retractIfCan(upxs)@Union(ULS,"failed")) case "failed" => + "failed" + retractIfCan(ulsIfCan :: ULS) + + --retract(upxs:%):UTS == + --(ulsIfCan := retractIfCan(upxs)@Union(ULS,"failed")) case "failed" => + --error "retractIfCan: series has fractional exponents" + --utsIfCan := retractIfCan(ulsIfCan :: ULS)@Union(UTS,"failed") + --utsIfCan case "failed" => + --error "retractIfCan: series has negative exponents" + --utsIfCan :: UTS + + coerce(v:Variable(var)) == + zero? cen => monomial(1,1) + monomial(1,1) + monomial(cen,0) + + if Coef has "*": (Fraction Integer, Coef) -> Coef then + differentiate(upxs:%,v:Variable(var)) == differentiate upxs + + if Coef has Algebra Fraction Integer then + integrate(upxs:%,v:Variable(var)) == integrate upxs + + if Coef has coerce: Symbol -> Coef then + if Coef has "**": (Coef,RN) -> Coef then + + roundDown: RN -> I + roundDown rn == + -- returns the largest integer <= rn + (den := denom rn) = 1 => numer rn + n := (num := numer rn) quo den + positive?(num) => n + n - 1 + + stToCoef: (ST,Coef,NNI,NNI) -> Coef + stToCoef(st,term,n,n0) == + (n > n0) or (empty? st) => 0 + frst(st) * term ** n + stToCoef(rst st,term,n + 1,n0) + + approximateLaurent: (ULS,Coef,I) -> Coef + approximateLaurent(x,term,n) == + (m := n - (e := degree x)) < 0 => 0 + app := stToCoef(coefficients taylorRep x,term,0,m :: NNI) + zero? e => app + app * term ** (e :: RN) + + approximate(x,r) == + e := rationalPower(x) + term := ((variable(x) :: Coef) - center(x)) ** e + approximateLaurent(laurentRep x,term,roundDown(r / e)) + + termOutput:(RN,Coef,OUT) -> OUT + termOutput(k,c,vv) == + -- creates a term c * vv ** k + k = 0 => c :: OUT + mon := + k = 1 => vv + vv ** (k :: OUT) + c = 1 => mon + c = -1 => -mon + (c :: OUT) * mon + + showAll?:() -> Boolean + -- check a global Lisp variable + showAll?() == true + + termsToOutputForm:(RN,RN,ST,OUT) -> OUT + termsToOutputForm(m,rat,uu,xxx) == + l : L OUT := empty() + empty? uu => 0 :: OUT + n : NNI; count : NNI := _$streamCount$Lisp + for n in 0..count while not empty? uu repeat + if frst(uu) ^= 0 then + l := concat(termOutput((n :: I) * rat + m,frst uu,xxx),l) + uu := rst uu + if showAll?() then + for n in (count + 1).. while explicitEntries? uu and _ + not eq?(uu,rst uu) repeat + if frst(uu) ^= 0 then + l := concat(termOutput((n :: I) * rat + m,frst uu,xxx),l) + uu := rst uu + l := + explicitlyEmpty? uu => l + eq?(uu,rst uu) and frst uu = 0 => l + concat(prefix("O" :: OUT,[xxx ** (((n::I) * rat + m) :: OUT)]),l) + empty? l => 0 :: OUT + reduce("+",reverse_! l) + + coerce(upxs:%):OUT == + rat := getExpon upxs; uls := laurentRep upxs + count : I := _$streamCount$Lisp + uls := removeZeroes(_$streamCount$Lisp,uls) + m : RN := (degree uls) * rat + p := coefficients taylorRep uls + xxx := + zero? cen => var :: OUT + paren(var :: OUT - cen :: OUT) + termsToOutputForm(m,rat,p,xxx) + +@ +\section{package UPXS2 UnivariatePuiseuxSeriesFunctions2} +<<package UPXS2 UnivariatePuiseuxSeriesFunctions2>>= +)abbrev package UPXS2 UnivariatePuiseuxSeriesFunctions2 +++ Mapping package for univariate Puiseux series +++ Author: Scott C. Morrison +++ Date Created: 5 April 1991 +++ Date Last Updated: 5 April 1991 +++ Keywords: Puiseux series, map +++ Examples: +++ References: +++ Description: +++ Mapping package for univariate Puiseux series. +++ This package allows one to apply a function to the coefficients of +++ a univariate Puiseux series. +UnivariatePuiseuxSeriesFunctions2(Coef1,Coef2,var1,var2,cen1,cen2):_ + Exports == Implementation where + Coef1 : Ring + Coef2 : Ring + var1: Symbol + var2: Symbol + cen1: Coef1 + cen2: Coef2 + UPS1 ==> UnivariatePuiseuxSeries(Coef1, var1, cen1) + UPS2 ==> UnivariatePuiseuxSeries(Coef2, var2, cen2) + ULSP2 ==> UnivariateLaurentSeriesFunctions2(Coef1, Coef2, var1, var2, cen1, cen2) + + Exports ==> with + map: (Coef1 -> Coef2,UPS1) -> UPS2 + ++ \spad{map(f,g(x))} applies the map f to the coefficients of the + ++ Puiseux series \spad{g(x)}. + + Implementation ==> add + + map(f,ups) == puiseux(rationalPower ups, map(f, laurentRep ups)$ULSP2) + +@ +\section{License} +<<license>>= +--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ +<<*>>= +<<license>> + +<<category UPXSCCA UnivariatePuiseuxSeriesConstructorCategory>> +<<domain UPXSCONS UnivariatePuiseuxSeriesConstructor>> +<<domain UPXS UnivariatePuiseuxSeries>> +<<package UPXS2 UnivariatePuiseuxSeriesFunctions2>> +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |