aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/oderf.spad.pamphlet
diff options
context:
space:
mode:
Diffstat (limited to 'src/algebra/oderf.spad.pamphlet')
-rw-r--r--src/algebra/oderf.spad.pamphlet900
1 files changed, 900 insertions, 0 deletions
diff --git a/src/algebra/oderf.spad.pamphlet b/src/algebra/oderf.spad.pamphlet
new file mode 100644
index 00000000..6573a809
--- /dev/null
+++ b/src/algebra/oderf.spad.pamphlet
@@ -0,0 +1,900 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/algebra oderf.spad}
+\author{Manuel Bronstein}
+\maketitle
+\begin{abstract}
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+\section{package BALFACT BalancedFactorisation}
+<<package BALFACT BalancedFactorisation>>=
+)abbrev package BALFACT BalancedFactorisation
+++ Author: Manuel Bronstein
+++ Date Created: 1 March 1991
+++ Date Last Updated: 11 October 1991
+++ Description: This package provides balanced factorisations of polynomials.
+BalancedFactorisation(R, UP): Exports == Implementation where
+ R : Join(GcdDomain, CharacteristicZero)
+ UP : UnivariatePolynomialCategory R
+
+ Exports ==> with
+ balancedFactorisation: (UP, UP) -> Factored UP
+ ++ balancedFactorisation(a, b) returns
+ ++ a factorisation \spad{a = p1^e1 ... pm^em} such that each
+ ++ \spad{pi} is balanced with respect to b.
+ balancedFactorisation: (UP, List UP) -> Factored UP
+ ++ balancedFactorisation(a, [b1,...,bn]) returns
+ ++ a factorisation \spad{a = p1^e1 ... pm^em} such that each
+ ++ pi is balanced with respect to \spad{[b1,...,bm]}.
+
+ Implementation ==> add
+ balSqfr : (UP, Integer, List UP) -> Factored UP
+ balSqfr1: (UP, Integer, UP) -> Factored UP
+
+ balancedFactorisation(a:UP, b:UP) == balancedFactorisation(a, [b])
+
+ balSqfr1(a, n, b) ==
+ g := gcd(a, b)
+ fa := sqfrFactor((a exquo g)::UP, n)
+ ground? g => fa
+ fa * balSqfr1(g, n, (b exquo (g ** order(b, g)))::UP)
+
+ balSqfr(a, n, l) ==
+ b := first l
+ empty? rest l => balSqfr1(a, n, b)
+ */[balSqfr1(f.factor, n, b) for f in factors balSqfr(a,n,rest l)]
+
+ balancedFactorisation(a:UP, l:List UP) ==
+ empty?(ll := select(#1 ^= 0, l)) =>
+ error "balancedFactorisation: 2nd argument is empty or all 0"
+ sa := squareFree a
+ unit(sa) * */[balSqfr(f.factor,f.exponent,ll) for f in factors sa])
+
+@
+\section{package BOUNDZRO BoundIntegerRoots}
+<<package BOUNDZRO BoundIntegerRoots>>=
+)abbrev package BOUNDZRO BoundIntegerRoots
+++ Author: Manuel Bronstein
+++ Date Created: 11 March 1991
+++ Date Last Updated: 18 November 1991
+++ Description:
+++ \spadtype{BoundIntegerRoots} provides functions to
+++ find lower bounds on the integer roots of a polynomial.
+BoundIntegerRoots(F, UP): Exports == Implementation where
+ F : Join(Field, RetractableTo Fraction Integer)
+ UP : UnivariatePolynomialCategory F
+
+ Z ==> Integer
+ Q ==> Fraction Z
+ K ==> Kernel F
+ UPQ ==> SparseUnivariatePolynomial Q
+ ALGOP ==> "%alg"
+
+ Exports ==> with
+ integerBound: UP -> Z
+ ++ integerBound(p) returns a lower bound on the negative integer
+ ++ roots of p, and 0 if p has no negative integer roots.
+
+ Implementation ==> add
+ import RationalFactorize(UPQ)
+ import UnivariatePolynomialCategoryFunctions2(F, UP, Q, UPQ)
+
+ qbound : (UP, UPQ) -> Z
+ zroot1 : UP -> Z
+ qzroot1: UPQ -> Z
+ negint : Q -> Z
+
+-- returns 0 if p has no integer root < 0, its negative integer root otherwise
+ qzroot1 p == negint(- leadingCoefficient(reductum p) / leadingCoefficient p)
+
+-- returns 0 if p has no integer root < 0, its negative integer root otherwise
+ zroot1 p ==
+ z := - leadingCoefficient(reductum p) / leadingCoefficient p
+ (r := retractIfCan(z)@Union(Q, "failed")) case Q => negint(r::Q)
+ 0
+
+-- returns 0 if r is not a negative integer, r otherwise
+ negint r ==
+ ((u := retractIfCan(r)@Union(Z, "failed")) case Z) and (u::Z < 0) => u::Z
+ 0
+
+ if F has ExpressionSpace then
+ bringDown: F -> Q
+
+-- the random substitution used by bringDown is NOT always a ring-homorphism
+-- (because of potential algebraic kernels), but is ALWAYS a Z-linear map.
+-- this guarantees that bringing down the coefficients of (x + n) q(x) for an
+-- integer n yields a polynomial h(x) which is divisible by x + n
+-- the only problem is that evaluating with random numbers can cause a
+-- division by 0. We should really be able to trap this error later and
+-- reevaluate with a new set of random numbers MB 11/91
+ bringDown f ==
+ t := tower f
+ retract eval(f, t, [random()$Q :: F for k in t])
+
+ integerBound p ==
+-- one? degree p => zroot1 p
+ (degree p) = 1 => zroot1 p
+ q1 := map(bringDown, p)
+ q2 := map(bringDown, p)
+ qbound(p, gcd(q1, q2))
+
+ else
+ integerBound p ==
+-- one? degree p => zroot1 p
+ (degree p) = 1 => zroot1 p
+ qbound(p, map(retract(#1)@Q, p))
+
+-- we can probably do better here (i.e. without factoring)
+ qbound(p, q) ==
+ bound:Z := 0
+ for rec in factors factor q repeat
+-- if one?(degree(rec.factor)) and ((r := qzroot1(rec.factor)) < bound)
+ if ((degree(rec.factor)) = 1) and ((r := qzroot1(rec.factor)) < bound)
+ and zero? p(r::Q::F) then bound := r
+ bound
+
+@
+\section{package ODEPRIM PrimitiveRatDE}
+<<package ODEPRIM PrimitiveRatDE>>=
+)abbrev package ODEPRIM PrimitiveRatDE
+++ Author: Manuel Bronstein
+++ Date Created: 1 March 1991
+++ Date Last Updated: 1 February 1994
+++ Description:
+++ \spad{PrimitiveRatDE} provides functions for in-field solutions of linear
+++ ordinary differential equations, in the transcendental case.
+++ The derivation to use is given by the parameter \spad{L}.
+PrimitiveRatDE(F, UP, L, LQ): Exports == Implementation where
+ F : Join(Field, CharacteristicZero, RetractableTo Fraction Integer)
+ UP : UnivariatePolynomialCategory F
+ L : LinearOrdinaryDifferentialOperatorCategory UP
+ LQ : LinearOrdinaryDifferentialOperatorCategory Fraction UP
+
+ N ==> NonNegativeInteger
+ Z ==> Integer
+ RF ==> Fraction UP
+ UP2 ==> SparseUnivariatePolynomial UP
+ REC ==> Record(center:UP, equation:UP)
+
+ Exports ==> with
+ denomLODE: (L, RF) -> Union(UP, "failed")
+ ++ denomLODE(op, g) returns a polynomial d such that
+ ++ any rational solution of \spad{op y = g}
+ ++ is of the form \spad{p/d} for some polynomial p, and
+ ++ "failed", if the equation has no rational solution.
+ denomLODE: (L, List RF) -> UP
+ ++ denomLODE(op, [g1,...,gm]) returns a polynomial
+ ++ d such that any rational solution of \spad{op y = c1 g1 + ... + cm gm}
+ ++ is of the form \spad{p/d} for some polynomial p.
+ indicialEquations: L -> List REC
+ ++ indicialEquations op returns \spad{[[d1,e1],...,[dq,eq]]} where
+ ++ the \spad{d_i}'s are the affine singularities of \spad{op},
+ ++ and the \spad{e_i}'s are the indicial equations at each \spad{d_i}.
+ indicialEquations: (L, UP) -> List REC
+ ++ indicialEquations(op, p) returns \spad{[[d1,e1],...,[dq,eq]]} where
+ ++ the \spad{d_i}'s are the affine singularities of \spad{op}
+ ++ above the roots of \spad{p},
+ ++ and the \spad{e_i}'s are the indicial equations at each \spad{d_i}.
+ indicialEquation: (L, F) -> UP
+ ++ indicialEquation(op, a) returns the indicial equation of \spad{op}
+ ++ at \spad{a}.
+ indicialEquations: LQ -> List REC
+ ++ indicialEquations op returns \spad{[[d1,e1],...,[dq,eq]]} where
+ ++ the \spad{d_i}'s are the affine singularities of \spad{op},
+ ++ and the \spad{e_i}'s are the indicial equations at each \spad{d_i}.
+ indicialEquations: (LQ, UP) -> List REC
+ ++ indicialEquations(op, p) returns \spad{[[d1,e1],...,[dq,eq]]} where
+ ++ the \spad{d_i}'s are the affine singularities of \spad{op}
+ ++ above the roots of \spad{p},
+ ++ and the \spad{e_i}'s are the indicial equations at each \spad{d_i}.
+ indicialEquation: (LQ, F) -> UP
+ ++ indicialEquation(op, a) returns the indicial equation of \spad{op}
+ ++ at \spad{a}.
+ splitDenominator: (LQ, List RF) -> Record(eq:L, rh:List RF)
+ ++ splitDenominator(op, [g1,...,gm]) returns \spad{op0, [h1,...,hm]}
+ ++ such that the equations \spad{op y = c1 g1 + ... + cm gm} and
+ ++ \spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.
+
+ Implementation ==> add
+ import BoundIntegerRoots(F, UP)
+ import BalancedFactorisation(F, UP)
+ import InnerCommonDenominator(UP, RF, List UP, List RF)
+ import UnivariatePolynomialCategoryFunctions2(F, UP, UP, UP2)
+
+ tau : (UP, UP, UP, N) -> UP
+ NPbound : (UP, L, UP) -> N
+ hdenom : (L, UP, UP) -> UP
+ denom0 : (Z, L, UP, UP, UP) -> UP
+ indicialEq : (UP, List N, List UP) -> UP
+ separateZeros: (UP, UP) -> UP
+ UPfact : N -> UP
+ UP2UP2 : UP -> UP2
+ indeq : (UP, L) -> UP
+ NPmulambda : (UP, L) -> Record(mu:Z, lambda:List N, func:List UP)
+
+ diff := D()$L
+
+ UP2UP2 p == map(#1::UP, p)
+ indicialEquations(op:L) == indicialEquations(op, leadingCoefficient op)
+ indicialEquation(op:L, a:F) == indeq(monomial(1, 1) - a::UP, op)
+
+ splitDenominator(op, lg) ==
+ cd := splitDenominator coefficients op
+ f := cd.den / gcd(cd.num)
+ l:L := 0
+ while op ^= 0 repeat
+ l := l + monomial(retract(f * leadingCoefficient op), degree op)
+ op := reductum op
+ [l, [f * g for g in lg]]
+
+ tau(p, pp, q, n) ==
+ ((pp ** n) * ((q exquo (p ** order(q, p)))::UP)) rem p
+
+ indicialEquations(op:LQ) ==
+ indicialEquations(splitDenominator(op, empty()).eq)
+
+ indicialEquations(op:LQ, p:UP) ==
+ indicialEquations(splitDenominator(op, empty()).eq, p)
+
+ indicialEquation(op:LQ, a:F) ==
+ indeq(monomial(1, 1) - a::UP, splitDenominator(op, empty()).eq)
+
+-- returns z(z-1)...(z-(n-1))
+ UPfact n ==
+ zero? n => 1
+ z := monomial(1, 1)$UP
+ */[z - i::F::UP for i in 0..(n-1)::N]
+
+ indicialEq(c, lamb, lf) ==
+ cp := diff c
+ cc := UP2UP2 c
+ s:UP2 := 0
+ for i in lamb for f in lf repeat
+ s := s + (UPfact i) * UP2UP2 tau(c, cp, f, i)
+ primitivePart resultant(cc, s)
+
+ NPmulambda(c, l) ==
+ lamb:List(N) := [d := degree l]
+ lf:List(UP) := [a := leadingCoefficient l]
+ mup := d::Z - order(a, c)
+ while (l := reductum l) ^= 0 repeat
+ a := leadingCoefficient l
+ if (m := (d := degree l)::Z - order(a, c)) > mup then
+ mup := m
+ lamb := [d]
+ lf := [a]
+ else if (m = mup) then
+ lamb := concat(d, lamb)
+ lf := concat(a, lf)
+ [mup, lamb, lf]
+
+-- e = 0 means homogeneous equation
+ NPbound(c, l, e) ==
+ rec := NPmulambda(c, l)
+ n := max(0, - integerBound indicialEq(c, rec.lambda, rec.func))
+ zero? e => n::N
+ max(n, order(e, c)::Z - rec.mu)::N
+
+ hdenom(l, d, e) ==
+ */[dd.factor ** NPbound(dd.factor, l, e)
+ for dd in factors balancedFactorisation(d, coefficients l)]
+
+ denom0(n, l, d, e, h) ==
+ hdenom(l, d, e) * */[hh.factor ** max(0, order(e, hh.factor) - n)::N
+ for hh in factors balancedFactorisation(h, e)]
+
+-- returns a polynomials whose zeros are the zeros of e which are not
+-- zeros of d
+ separateZeros(d, e) ==
+ ((g := squareFreePart e) exquo gcd(g, squareFreePart d))::UP
+
+ indeq(c, l) ==
+ rec := NPmulambda(c, l)
+ indicialEq(c, rec.lambda, rec.func)
+
+ indicialEquations(op:L, p:UP) ==
+ [[dd.factor, indeq(dd.factor, op)]
+ for dd in factors balancedFactorisation(p, coefficients op)]
+
+-- cannot return "failed" in the homogeneous case
+ denomLODE(l:L, g:RF) ==
+ d := leadingCoefficient l
+ zero? g => hdenom(l, d, 0)
+ h := separateZeros(d, e := denom g)
+ n := degree l
+ (e exquo (h**(n + 1))) case "failed" => "failed"
+ denom0(n, l, d, e, h)
+
+ denomLODE(l:L, lg:List RF) ==
+ empty? lg => denomLODE(l, 0)::UP
+ d := leadingCoefficient l
+ h := separateZeros(d, e := "lcm"/[denom g for g in lg])
+ denom0(degree l, l, d, e, h)
+
+@
+\section{package UTSODETL UTSodetools}
+<<package UTSODETL UTSodetools>>=
+)abbrev package UTSODETL UTSodetools
+++ Author: Manuel Bronstein
+++ Date Created: 31 January 1994
+++ Date Last Updated: 3 February 1994
+++ Description:
+++ \spad{RUTSodetools} provides tools to interface with the series
+++ ODE solver when presented with linear ODEs.
+UTSodetools(F, UP, L, UTS): Exports == Implementation where
+ F : Ring
+ UP : UnivariatePolynomialCategory F
+ L : LinearOrdinaryDifferentialOperatorCategory UP
+ UTS: UnivariateTaylorSeriesCategory F
+
+ Exports ==> with
+ UP2UTS: UP -> UTS
+ ++ UP2UTS(p) converts \spad{p} to a Taylor series.
+ UTS2UP: (UTS, NonNegativeInteger) -> UP
+ ++ UTS2UP(s, n) converts the first \spad{n} terms of \spad{s}
+ ++ to a univariate polynomial.
+ LODO2FUN: L -> (List UTS -> UTS)
+ ++ LODO2FUN(op) returns the function to pass to the series ODE
+ ++ solver in order to solve \spad{op y = 0}.
+ if F has IntegralDomain then
+ RF2UTS: Fraction UP -> UTS
+ ++ RF2UTS(f) converts \spad{f} to a Taylor series.
+
+ Implementation ==> add
+ fun: (Vector UTS, List UTS) -> UTS
+
+ UP2UTS p ==
+ q := p(monomial(1, 1) + center(0)::UP)
+ +/[monomial(coefficient(q, i), i)$UTS for i in 0..degree q]
+
+ UTS2UP(s, n) ==
+ xmc := monomial(1, 1)$UP - center(0)::UP
+ xmcn:UP := 1
+ ans:UP := 0
+ for i in 0..n repeat
+ ans := ans + coefficient(s, i) * xmcn
+ xmcn := xmc * xmcn
+ ans
+
+ LODO2FUN op ==
+ a := recip(UP2UTS(- leadingCoefficient op))::UTS
+ n := (degree(op) - 1)::NonNegativeInteger
+ v := [a * UP2UTS coefficient(op, i) for i in 0..n]$Vector(UTS)
+ fun(v, #1)
+
+ fun(v, l) ==
+ ans:UTS := 0
+ for b in l for i in 1.. repeat ans := ans + v.i * b
+ ans
+
+ if F has IntegralDomain then
+ RF2UTS f == UP2UTS(numer f) * recip(UP2UTS denom f)::UTS
+
+@
+\section{package ODERAT RationalLODE}
+<<package ODERAT RationalLODE>>=
+)abbrev package ODERAT RationalLODE
+++ Author: Manuel Bronstein
+++ Date Created: 13 March 1991
+++ Date Last Updated: 13 April 1994
+++ Description:
+++ \spad{RationalLODE} provides functions for in-field solutions of linear
+++ ordinary differential equations, in the rational case.
+RationalLODE(F, UP): Exports == Implementation where
+ F : Join(Field, CharacteristicZero, RetractableTo Integer,
+ RetractableTo Fraction Integer)
+ UP : UnivariatePolynomialCategory F
+
+ N ==> NonNegativeInteger
+ Z ==> Integer
+ RF ==> Fraction UP
+ U ==> Union(RF, "failed")
+ V ==> Vector F
+ M ==> Matrix F
+ LODO ==> LinearOrdinaryDifferentialOperator1 RF
+ LODO2==> LinearOrdinaryDifferentialOperator2(UP, RF)
+
+ Exports ==> with
+ ratDsolve: (LODO, RF) -> Record(particular: U, basis: List RF)
+ ++ ratDsolve(op, g) returns \spad{["failed", []]} if the equation
+ ++ \spad{op y = g} has no rational solution. Otherwise, it returns
+ ++ \spad{[f, [y1,...,ym]]} where f is a particular rational solution
+ ++ and the yi's form a basis for the rational solutions of the
+ ++ homogeneous equation.
+ ratDsolve: (LODO, List RF) -> Record(basis:List RF, mat:Matrix F)
+ ++ ratDsolve(op, [g1,...,gm]) returns \spad{[[h1,...,hq], M]} such
+ ++ that any rational solution of \spad{op y = c1 g1 + ... + cm gm}
+ ++ is of the form \spad{d1 h1 + ... + dq hq} where
+ ++ \spad{M [d1,...,dq,c1,...,cm] = 0}.
+ ratDsolve: (LODO2, RF) -> Record(particular: U, basis: List RF)
+ ++ ratDsolve(op, g) returns \spad{["failed", []]} if the equation
+ ++ \spad{op y = g} has no rational solution. Otherwise, it returns
+ ++ \spad{[f, [y1,...,ym]]} where f is a particular rational solution
+ ++ and the yi's form a basis for the rational solutions of the
+ ++ homogeneous equation.
+ ratDsolve: (LODO2, List RF) -> Record(basis:List RF, mat:Matrix F)
+ ++ ratDsolve(op, [g1,...,gm]) returns \spad{[[h1,...,hq], M]} such
+ ++ that any rational solution of \spad{op y = c1 g1 + ... + cm gm}
+ ++ is of the form \spad{d1 h1 + ... + dq hq} where
+ ++ \spad{M [d1,...,dq,c1,...,cm] = 0}.
+ indicialEquationAtInfinity: LODO -> UP
+ ++ indicialEquationAtInfinity op returns the indicial equation of
+ ++ \spad{op} at infinity.
+ indicialEquationAtInfinity: LODO2 -> UP
+ ++ indicialEquationAtInfinity op returns the indicial equation of
+ ++ \spad{op} at infinity.
+
+ Implementation ==> add
+ import BoundIntegerRoots(F, UP)
+ import RationalIntegration(F, UP)
+ import PrimitiveRatDE(F, UP, LODO2, LODO)
+ import LinearSystemMatrixPackage(F, V, V, M)
+ import InnerCommonDenominator(UP, RF, List UP, List RF)
+
+ nzero? : V -> Boolean
+ evenodd : N -> F
+ UPfact : N -> UP
+ infOrder : RF -> Z
+ infTau : (UP, N) -> F
+ infBound : (LODO2, List RF) -> N
+ regularPoint : (LODO2, List RF) -> Z
+ infIndicialEquation: (List N, List UP) -> UP
+ makeDot : (Vector F, List RF) -> RF
+ unitlist : (N, N) -> List F
+ infMuLambda: LODO2 -> Record(mu:Z, lambda:List N, func:List UP)
+ ratDsolve0: (LODO2, RF) -> Record(particular: U, basis: List RF)
+ ratDsolve1: (LODO2, List RF) -> Record(basis:List RF, mat:Matrix F)
+ candidates: (LODO2,List RF,UP) -> Record(basis:List RF,particular:List RF)
+
+ dummy := new()$Symbol
+
+ infOrder f == (degree denom f) - (degree numer f)
+ evenodd n == (even? n => 1; -1)
+
+ ratDsolve1(op, lg) ==
+ d := denomLODE(op, lg)
+ rec := candidates(op, lg, d)
+ l := concat([op q for q in rec.basis],
+ [op(rec.particular.i) - lg.i for i in 1..#(rec.particular)])
+ sys1 := reducedSystem(matrix [l])@Matrix(UP)
+ [rec.basis, reducedSystem sys1]
+
+ ratDsolve0(op, g) ==
+ zero? degree op => [inv(leadingCoefficient(op)::RF) * g, empty()]
+ minimumDegree op > 0 =>
+ sol := ratDsolve0(monicRightDivide(op, monomial(1, 1)).quotient, g)
+ b:List(RF) := [1]
+ for f in sol.basis repeat
+ if (uu := infieldint f) case RF then b := concat(uu::RF, b)
+ sol.particular case "failed" => ["failed", b]
+ [infieldint(sol.particular::RF), b]
+ (u := denomLODE(op, g)) case "failed" => ["failed", empty()]
+ rec := candidates(op, [g], u::UP)
+ l := lb := lsol := empty()$List(RF)
+ for q in rec.basis repeat
+ if zero?(opq := op q) then lsol := concat(q, lsol)
+ else (l := concat(opq, l); lb := concat(q, lb))
+ h:RF := (zero? g => 0; first(rec.particular))
+ empty? l =>
+ zero? g => [0, lsol]
+ [(g = op h => h; "failed"), lsol]
+ m:M
+ v:V
+ if zero? g then
+ m := reducedSystem(reducedSystem(matrix [l])@Matrix(UP))@M
+ v := new(ncols m, 0)$V
+ else
+ sys1 := reducedSystem(matrix [l], vector [g - op h]
+ )@Record(mat: Matrix UP, vec: Vector UP)
+ sys2 := reducedSystem(sys1.mat, sys1.vec)@Record(mat:M, vec:V)
+ m := sys2.mat
+ v := sys2.vec
+ sol := solve(m, v)
+ part:U :=
+ zero? g => 0
+ sol.particular case "failed" => "failed"
+ makeDot(sol.particular::V, lb) + first(rec.particular)
+ [part,
+ concat_!(lsol, [makeDot(v, lb) for v in sol.basis | nzero? v])]
+
+ indicialEquationAtInfinity(op:LODO2) ==
+ rec := infMuLambda op
+ infIndicialEquation(rec.lambda, rec.func)
+
+ indicialEquationAtInfinity(op:LODO) ==
+ rec := splitDenominator(op, empty())
+ indicialEquationAtInfinity(rec.eq)
+
+ regularPoint(l, lg) ==
+ a := leadingCoefficient(l) * commonDenominator lg
+ coefficient(a, 0) ^= 0 => 0
+ for i in 1.. repeat
+ a(j := i::F) ^= 0 => return i
+ a(-j) ^= 0 => return(-i)
+
+ unitlist(i, q) ==
+ v := new(q, 0)$Vector(F)
+ v.i := 1
+ parts v
+
+ candidates(op, lg, d) ==
+ n := degree d + infBound(op, lg)
+ m := regularPoint(op, lg)
+ uts := UnivariateTaylorSeries(F, dummy, m::F)
+ tools := UTSodetools(F, UP, LODO2, uts)
+ solver := UnivariateTaylorSeriesODESolver(F, uts)
+ dd := UP2UTS(d)$tools
+ f := LODO2FUN(op)$tools
+ q := degree op
+ e := unitlist(1, q)
+ hom := [UTS2UP(dd * ode(f, unitlist(i, q))$solver, n)$tools /$RF d
+ for i in 1..q]$List(RF)
+ a1 := inv(leadingCoefficient(op)::RF)
+ part := [UTS2UP(dd * ode(RF2UTS(a1 * g)$tools + f #1, e)$solver, n)$tools
+ /$RF d for g in lg | g ^= 0]$List(RF)
+ [hom, part]
+
+ nzero? v ==
+ for i in minIndex v .. maxIndex v repeat
+ not zero? qelt(v, i) => return true
+ false
+
+-- returns z(z+1)...(z+(n-1))
+ UPfact n ==
+ zero? n => 1
+ z := monomial(1, 1)$UP
+ */[z + i::F::UP for i in 0..(n-1)::N]
+
+ infMuLambda l ==
+ lamb:List(N) := [d := degree l]
+ lf:List(UP) := [a := leadingCoefficient l]
+ mup := degree(a)::Z - d
+ while (l := reductum l) ^= 0 repeat
+ a := leadingCoefficient l
+ if (m := degree(a)::Z - (d := degree l)) > mup then
+ mup := m
+ lamb := [d]
+ lf := [a]
+ else if (m = mup) then
+ lamb := concat(d, lamb)
+ lf := concat(a, lf)
+ [mup, lamb, lf]
+
+ infIndicialEquation(lambda, lf) ==
+ ans:UP := 0
+ for i in lambda for f in lf repeat
+ ans := ans + evenodd i * leadingCoefficient f * UPfact i
+ ans
+
+ infBound(l, lg) ==
+ rec := infMuLambda l
+ n := min(- degree(l)::Z - 1,
+ integerBound infIndicialEquation(rec.lambda, rec.func))
+ while not(empty? lg) and zero? first lg repeat lg := rest lg
+ empty? lg => (-n)::N
+ m := infOrder first lg
+ for g in rest lg repeat
+ if not(zero? g) and (mm := infOrder g) < m then m := mm
+ (-min(n, rec.mu - degree(leadingCoefficient l)::Z + m))::N
+
+ makeDot(v, bas) ==
+ ans:RF := 0
+ for i in 1.. for b in bas repeat ans := ans + v.i::UP * b
+ ans
+
+ ratDsolve(op:LODO, g:RF) ==
+ rec := splitDenominator(op, [g])
+ ratDsolve0(rec.eq, first(rec.rh))
+
+ ratDsolve(op:LODO, lg:List RF) ==
+ rec := splitDenominator(op, lg)
+ ratDsolve1(rec.eq, rec.rh)
+
+ ratDsolve(op:LODO2, g:RF) ==
+ unit?(c := content op) => ratDsolve0(op, g)
+ ratDsolve0((op exquo c)::LODO2, inv(c::RF) * g)
+
+ ratDsolve(op:LODO2, lg:List RF) ==
+ unit?(c := content op) => ratDsolve1(op, lg)
+ ratDsolve1((op exquo c)::LODO2, [inv(c::RF) * g for g in lg])
+
+@
+\section{package ODETOOLS ODETools}
+<<package ODETOOLS ODETools>>=
+)abbrev package ODETOOLS ODETools
+++ Author: Manuel Bronstein
+++ Date Created: 20 March 1991
+++ Date Last Updated: 2 February 1994
+++ Description:
+++ \spad{ODETools} provides tools for the linear ODE solver.
+ODETools(F, LODO): Exports == Implementation where
+ N ==> NonNegativeInteger
+ L ==> List F
+ V ==> Vector F
+ M ==> Matrix F
+
+ F: Field
+ LODO: LinearOrdinaryDifferentialOperatorCategory F
+
+ Exports ==> with
+ wronskianMatrix: L -> M
+ ++ wronskianMatrix([f1,...,fn]) returns the \spad{n x n} matrix m
+ ++ whose i^th row is \spad{[f1^(i-1),...,fn^(i-1)]}.
+ wronskianMatrix: (L, N) -> M
+ ++ wronskianMatrix([f1,...,fn], q, D) returns the \spad{q x n} matrix m
+ ++ whose i^th row is \spad{[f1^(i-1),...,fn^(i-1)]}.
+ variationOfParameters: (LODO, F, L) -> Union(V, "failed")
+ ++ variationOfParameters(op, g, [f1,...,fm])
+ ++ returns \spad{[u1,...,um]} such that a particular solution of the
+ ++ equation \spad{op y = g} is \spad{f1 int(u1) + ... + fm int(um)}
+ ++ where \spad{[f1,...,fm]} are linearly independent and \spad{op(fi)=0}.
+ ++ The value "failed" is returned if \spad{m < n} and no particular
+ ++ solution is found.
+ particularSolution: (LODO, F, L, F -> F) -> Union(F, "failed")
+ ++ particularSolution(op, g, [f1,...,fm], I) returns a particular
+ ++ solution h of the equation \spad{op y = g} where \spad{[f1,...,fm]}
+ ++ are linearly independent and \spad{op(fi)=0}.
+ ++ The value "failed" is returned if no particular solution is found.
+ ++ Note: the method of variations of parameters is used.
+
+ Implementation ==> add
+ import LinearSystemMatrixPackage(F, V, V, M)
+
+ diff := D()$LODO
+
+ wronskianMatrix l == wronskianMatrix(l, #l)
+
+ wronskianMatrix(l, q) ==
+ v:V := vector l
+ m:M := zero(q, #v)
+ for i in minRowIndex m .. maxRowIndex m repeat
+ setRow_!(m, i, v)
+ v := map_!(diff #1, v)
+ m
+
+ variationOfParameters(op, g, b) ==
+ empty? b => "failed"
+ v:V := new(n := degree op, 0)
+ qsetelt_!(v, maxIndex v, g / leadingCoefficient op)
+ particularSolution(wronskianMatrix(b, n), v)
+
+ particularSolution(op, g, b, integration) ==
+ zero? g => 0
+ (sol := variationOfParameters(op, g, b)) case "failed" => "failed"
+ ans:F := 0
+ for f in b for i in minIndex(s := sol::V) .. repeat
+ ans := ans + integration(qelt(s, i)) * f
+ ans
+
+@
+\section{package ODEINT ODEIntegration}
+<<package ODEINT ODEIntegration>>=
+)abbrev package ODEINT ODEIntegration
+++ Author: Manuel Bronstein
+++ Date Created: 4 November 1991
+++ Date Last Updated: 2 February 1994
+++ Description:
+++ \spadtype{ODEIntegration} provides an interface to the integrator.
+++ This package is intended for use
+++ by the differential equations solver but not at top-level.
+ODEIntegration(R, F): Exports == Implementation where
+ R: Join(OrderedSet, EuclideanDomain, RetractableTo Integer,
+ LinearlyExplicitRingOver Integer, CharacteristicZero)
+ F: Join(AlgebraicallyClosedFunctionSpace R, TranscendentalFunctionCategory,
+ PrimitiveFunctionCategory)
+
+ Q ==> Fraction Integer
+ UQ ==> Union(Q, "failed")
+ SY ==> Symbol
+ K ==> Kernel F
+ P ==> SparseMultivariatePolynomial(R, K)
+ REC ==> Record(coef:Q, logand:F)
+
+ Exports ==> with
+ int : (F, SY) -> F
+ ++ int(f, x) returns the integral of f with respect to x.
+ expint: (F, SY) -> F
+ ++ expint(f, x) returns e^{the integral of f with respect to x}.
+ diff : SY -> (F -> F)
+ ++ diff(x) returns the derivation with respect to x.
+
+ Implementation ==> add
+ import FunctionSpaceIntegration(R, F)
+ import ElementaryFunctionStructurePackage(R, F)
+
+ isQ : List F -> UQ
+ isQlog: F -> Union(REC, "failed")
+ mkprod: List REC -> F
+
+ diff x == differentiate(#1, x)
+
+-- This is the integration function to be used for quadratures
+ int(f, x) ==
+ (u := integrate(f, x)) case F => u::F
+ first(u::List(F))
+
+-- mkprod([q1, f1],...,[qn,fn]) returns */(fi^qi) but groups the
+-- qi having the same denominator together
+ mkprod l ==
+ empty? l => 1
+ rec := first l
+ d := denom(rec.coef)
+ ll := select(denom(#1.coef) = d, l)
+ nthRoot(*/[r.logand ** numer(r.coef) for r in ll], d) *
+ mkprod setDifference(l, ll)
+
+-- computes exp(int(f,x)) in a non-naive way
+ expint(f, x) ==
+ a := int(f, x)
+ (u := validExponential(tower a, a, x)) case F => u::F
+ da := denom a
+ l :=
+ (v := isPlus(na := numer a)) case List(P) => v::List(P)
+ [na]
+ exponent:P := 0
+ lrec:List(REC) := empty()
+ for term in l repeat
+ if (w := isQlog(term / da)) case REC then
+ lrec := concat(w::REC, lrec)
+ else
+ exponent := exponent + term
+ mkprod(lrec) * exp(exponent / da)
+
+-- checks if all the elements of l are rational numbers, returns their product
+ isQ l ==
+ prod:Q := 1
+ for x in l repeat
+ (u := retractIfCan(x)@UQ) case "failed" => return "failed"
+ prod := prod * u::Q
+ prod
+
+-- checks if a non-sum expr is of the form c * log(g) for a rational number c
+ isQlog f ==
+ is?(f, "log"::SY) => [1, first argument(retract(f)@K)]
+ (v := isTimes f) case List(F) and (#(l := v::List(F)) <= 3) =>
+ l := reverse_! sort_! l
+ is?(first l, "log"::SY) and ((u := isQ rest l) case Q) =>
+ [u::Q, first argument(retract(first(l))@K)]
+ "failed"
+ "failed"
+
+@
+\section{package ODECONST ConstantLODE}
+<<package ODECONST ConstantLODE>>=
+)abbrev package ODECONST ConstantLODE
+++ Author: Manuel Bronstein
+++ Date Created: 18 March 1991
+++ Date Last Updated: 3 February 1994
+++ Description: Solution of linear ordinary differential equations, constant coefficient case.
+ConstantLODE(R, F, L): Exports == Implementation where
+ R: Join(OrderedSet, EuclideanDomain, RetractableTo Integer,
+ LinearlyExplicitRingOver Integer, CharacteristicZero)
+ F: Join(AlgebraicallyClosedFunctionSpace R,
+ TranscendentalFunctionCategory, PrimitiveFunctionCategory)
+ L: LinearOrdinaryDifferentialOperatorCategory F
+
+ Z ==> Integer
+ SY ==> Symbol
+ K ==> Kernel F
+ V ==> Vector F
+ M ==> Matrix F
+ SUP ==> SparseUnivariatePolynomial F
+
+ Exports ==> with
+ constDsolve: (L, F, SY) -> Record(particular:F, basis:List F)
+ ++ constDsolve(op, g, x) returns \spad{[f, [y1,...,ym]]}
+ ++ where f is a particular solution of the equation \spad{op y = g},
+ ++ and the \spad{yi}'s form a basis for the solutions of \spad{op y = 0}.
+
+ Implementation ==> add
+ import ODETools(F, L)
+ import ODEIntegration(R, F)
+ import ElementaryFunctionSign(R, F)
+ import AlgebraicManipulations(R, F)
+ import FunctionSpaceIntegration(R, F)
+ import FunctionSpaceUnivariatePolynomialFactor(R, F, SUP)
+
+ homoBasis: (L, F) -> List F
+ quadSol : (SUP, F) -> List F
+ basisSqfr: (SUP, F) -> List F
+ basisSol : (SUP, Z, F) -> List F
+
+ constDsolve(op, g, x) ==
+ b := homoBasis(op, x::F)
+ [particularSolution(op, g, b, int(#1, x))::F, b]
+
+ homoBasis(op, x) ==
+ p:SUP := 0
+ while op ^= 0 repeat
+ p := p + monomial(leadingCoefficient op, degree op)
+ op := reductum op
+ b:List(F) := empty()
+ for ff in factors ffactor p repeat
+ b := concat_!(b, basisSol(ff.factor, dec(ff.exponent), x))
+ b
+
+ basisSol(p, n, x) ==
+ l := basisSqfr(p, x)
+ zero? n => l
+ ll := copy l
+ xn := x::F
+ for i in 1..n repeat
+ l := concat_!(l, [xn * f for f in ll])
+ xn := x * xn
+ l
+
+ basisSqfr(p, x) ==
+-- one?(d := degree p) =>
+ ((d := degree p) = 1) =>
+ [exp(- coefficient(p, 0) * x / leadingCoefficient p)]
+ d = 2 => quadSol(p, x)
+ [exp(a * x) for a in rootsOf p]
+
+ quadSol(p, x) ==
+ (u := sign(delta := (b := coefficient(p, 1))**2 - 4 *
+ (a := leadingCoefficient p) * (c := coefficient(p, 0))))
+ case Z and negative?(u::Z) =>
+ y := x / (2 * a)
+ r := - b * y
+ i := rootSimp(sqrt(-delta)) * y
+ [exp(r) * cos(i), exp(r) * sin(i)]
+ [exp(a * x) for a in zerosOf p]
+
+@
+\section{License}
+<<license>>=
+--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
+--All rights reserved.
+--
+--Redistribution and use in source and binary forms, with or without
+--modification, are permitted provided that the following conditions are
+--met:
+--
+-- - Redistributions of source code must retain the above copyright
+-- notice, this list of conditions and the following disclaimer.
+--
+-- - Redistributions in binary form must reproduce the above copyright
+-- notice, this list of conditions and the following disclaimer in
+-- the documentation and/or other materials provided with the
+-- distribution.
+--
+-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
+-- names of its contributors may be used to endorse or promote products
+-- derived from this software without specific prior written permission.
+--
+--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+@
+<<*>>=
+<<license>>
+
+-- Compile order for the differential equation solver:
+-- oderf.spad odealg.spad nlode.spad nlinsol.spad riccati.spad odeef.spad
+
+<<package BALFACT BalancedFactorisation>>
+<<package BOUNDZRO BoundIntegerRoots>>
+<<package ODEPRIM PrimitiveRatDE>>
+<<package UTSODETL UTSodetools>>
+<<package ODERAT RationalLODE>>
+<<package ODETOOLS ODETools>>
+<<package ODEINT ODEIntegration>>
+<<package ODECONST ConstantLODE>>
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} nothing
+\end{thebibliography}
+\end{document}