diff options
Diffstat (limited to 'src/algebra/modring.spad.pamphlet')
-rw-r--r-- | src/algebra/modring.spad.pamphlet | 18 |
1 files changed, 6 insertions, 12 deletions
diff --git a/src/algebra/modring.spad.pamphlet b/src/algebra/modring.spad.pamphlet index 3ee11ff6..e4303078 100644 --- a/src/algebra/modring.spad.pamphlet +++ b/src/algebra/modring.spad.pamphlet @@ -66,8 +66,7 @@ ModularRing(R,Mod,reduction:(R,Mod) -> R, 0 == [0$R,0$Mod]$Rep 1 == [1$R,0$Mod]$Rep zero? x == zero? x.val --- one? x == one? x.val - one? x == (x.val = 1) + one? x == one? x.val newmodulo(m1:Mod,m2:Mod) : Mod == r:=merge(m1,m2) @@ -146,8 +145,7 @@ EuclideanModularRing(S,R,Mod,reduction:(R,Mod) -> R, xm:=t::Mod yv:=y.val invlcy:R --- if one? leadingCoefficient yv then invlcy:=1 - if (leadingCoefficient yv = 1) then invlcy:=1 + if one? leadingCoefficient yv then invlcy:=1 else invlcy:=(inv reduce((leadingCoefficient yv)::R,xm)).val yv:=reduction(invlcy*yv,xm) @@ -161,8 +159,7 @@ EuclideanModularRing(S,R,Mod,reduction:(R,Mod) -> R, xm:=t::Mod yv:=y.val invlcy:R --- if not one? leadingCoefficient yv then - if not (leadingCoefficient yv = 1) then + if not one? leadingCoefficient yv then invlcy:=(inv reduce((leadingCoefficient yv)::R,xm)).val yv:=reduction(invlcy*yv,xm) dy:=degree yv @@ -178,8 +175,7 @@ EuclideanModularRing(S,R,Mod,reduction:(R,Mod) -> R, xm:=t::Mod yv:=y.val invlcy:R --- if not one? leadingCoefficient yv then - if not (leadingCoefficient yv = 1) then + if not one? leadingCoefficient yv then invlcy:=(inv reduce((leadingCoefficient yv)::R,xm)).val yv:=reduction(invlcy*yv,xm) r:=monicDivide(x.val,yv) @@ -190,14 +186,12 @@ EuclideanModularRing(S,R,Mod,reduction:(R,Mod) -> R, unitCanonical x == zero? x => x degree(x.val) = 0 => 1 --- one? leadingCoefficient(x.val) => x - (leadingCoefficient(x.val) = 1) => x + one? leadingCoefficient(x.val) => x invlcx:%:=inv reduce((leadingCoefficient(x.val))::R,x.modulo) invlcx * x unitNormal x == --- zero?(x) or one?(leadingCoefficient(x.val)) => [1, x, 1] - zero?(x) or ((leadingCoefficient(x.val)) = 1) => [1, x, 1] + zero?(x) or one?(leadingCoefficient(x.val)) => [1, x, 1] lcx := reduce((leadingCoefficient(x.val))::R,x.modulo) invlcx:=inv lcx degree(x.val) = 0 => [lcx, 1, invlcx] |