diff options
Diffstat (limited to 'src/algebra/matfuns.spad.pamphlet')
-rw-r--r-- | src/algebra/matfuns.spad.pamphlet | 803 |
1 files changed, 803 insertions, 0 deletions
diff --git a/src/algebra/matfuns.spad.pamphlet b/src/algebra/matfuns.spad.pamphlet new file mode 100644 index 00000000..59d08748 --- /dev/null +++ b/src/algebra/matfuns.spad.pamphlet @@ -0,0 +1,803 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/algebra matfuns.spad} +\author{Clifton J. Williamson, Patrizia Gianni} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{package IMATLIN InnerMatrixLinearAlgebraFunctions} +<<package IMATLIN InnerMatrixLinearAlgebraFunctions>>= +)abbrev package IMATLIN InnerMatrixLinearAlgebraFunctions +++ Author: Clifton J. Williamson, P.Gianni +++ Date Created: 13 November 1989 +++ Date Last Updated: September 1993 +++ Basic Operations: +++ Related Domains: IndexedMatrix(R,minRow,minCol), Matrix(R), +++ RectangularMatrix(n,m,R), SquareMatrix(n,R) +++ Also See: +++ AMS Classifications: +++ Keywords: matrix, canonical forms, linear algebra +++ Examples: +++ References: +++ Description: +++ \spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package +++ which provides standard linear algebra functions on domains in +++ \spad{MatrixCategory} +InnerMatrixLinearAlgebraFunctions(R,Row,Col,M):_ + Exports == Implementation where + R : Field + Row : FiniteLinearAggregate R + Col : FiniteLinearAggregate R + M : MatrixCategory(R,Row,Col) + I ==> Integer + + Exports ==> with + rowEchelon: M -> M + ++ \spad{rowEchelon(m)} returns the row echelon form of the matrix m. + rank: M -> NonNegativeInteger + ++ \spad{rank(m)} returns the rank of the matrix m. + nullity: M -> NonNegativeInteger + ++ \spad{nullity(m)} returns the mullity of the matrix m. This is the + ++ dimension of the null space of the matrix m. + if Col has shallowlyMutable then + nullSpace: M -> List Col + ++ \spad{nullSpace(m)} returns a basis for the null space of the + ++ matrix m. + determinant: M -> R + ++ \spad{determinant(m)} returns the determinant of the matrix m. + ++ an error message is returned if the matrix is not square. + generalizedInverse: M -> M + ++ \spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) + ++ inverse of the matrix m, i.e. the matrix h such that + ++ m*h*m=h, h*m*h=m, m*h and h*m are both symmetric matrices. + inverse: M -> Union(M,"failed") + ++ \spad{inverse(m)} returns the inverse of the matrix m. + ++ If the matrix is not invertible, "failed" is returned. + ++ Error: if the matrix is not square. + + Implementation ==> add + + rowAllZeroes?: (M,I) -> Boolean + rowAllZeroes?(x,i) == + -- determines if the ith row of x consists only of zeroes + -- internal function: no check on index i + for j in minColIndex(x)..maxColIndex(x) repeat + qelt(x,i,j) ^= 0 => return false + true + + colAllZeroes?: (M,I) -> Boolean + colAllZeroes?(x,j) == + -- determines if the ith column of x consists only of zeroes + -- internal function: no check on index j + for i in minRowIndex(x)..maxRowIndex(x) repeat + qelt(x,i,j) ^= 0 => return false + true + + rowEchelon y == + -- row echelon form via Gaussian elimination + x := copy y + minR := minRowIndex x; maxR := maxRowIndex x + minC := minColIndex x; maxC := maxColIndex x + i := minR + n: I := minR - 1 + for j in minC..maxC repeat + i > maxR => return x + n := minR - 1 + -- n = smallest k such that k >= i and x(k,j) ^= 0 + for k in i..maxR repeat + if qelt(x,k,j) ^= 0 then leave (n := k) + n = minR - 1 => "no non-zeroes" + -- put nth row in ith position + if i ^= n then swapRows_!(x,i,n) + -- divide ith row by its first non-zero entry + b := inv qelt(x,i,j) + qsetelt_!(x,i,j,1) + for k in (j+1)..maxC repeat qsetelt_!(x,i,k,b * qelt(x,i,k)) + -- perform row operations so that jth column has only one 1 + for k in minR..maxR repeat + if k ^= i and qelt(x,k,j) ^= 0 then + for k1 in (j+1)..maxC repeat + qsetelt_!(x,k,k1,qelt(x,k,k1) - qelt(x,k,j) * qelt(x,i,k1)) + qsetelt_!(x,k,j,0) + -- increment i + i := i + 1 + x + + rank x == + y := + (rk := nrows x) > (rh := ncols x) => + rk := rh + transpose x + copy x + y := rowEchelon y; i := maxRowIndex y + while rk > 0 and rowAllZeroes?(y,i) repeat + i := i - 1 + rk := (rk - 1) :: NonNegativeInteger + rk :: NonNegativeInteger + + nullity x == (ncols x - rank x) :: NonNegativeInteger + + if Col has shallowlyMutable then + + nullSpace y == + x := rowEchelon y + minR := minRowIndex x; maxR := maxRowIndex x + minC := minColIndex x; maxC := maxColIndex x + nrow := nrows x; ncol := ncols x + basis : List Col := nil() + rk := nrow; row := maxR + -- compute rank = # rows - # rows of all zeroes + while rk > 0 and rowAllZeroes?(x,row) repeat + rk := (rk - 1) :: NonNegativeInteger + row := (row - 1) :: NonNegativeInteger + -- if maximal rank, return zero vector + ncol <= nrow and rk = ncol => [new(ncol,0)] + -- if rank = 0, return standard basis vectors + rk = 0 => + for j in minC..maxC repeat + w : Col := new(ncol,0) + qsetelt_!(w,j,1) + basis := cons(w,basis) + basis + -- v contains information about initial 1's in the rows of x + -- if the ith row has an initial 1 in the jth column, then + -- v.j = i; v.j = minR - 1, otherwise + v : IndexedOneDimensionalArray(I,minC) := new(ncol,minR - 1) + for i in minR..(minR + rk - 1) repeat + for j in minC.. while qelt(x,i,j) = 0 repeat j + qsetelt_!(v,j,i) + j := maxC; l := minR + ncol - 1 + while j >= minC repeat + w : Col := new(ncol,0) + -- if there is no row with an initial 1 in the jth column, + -- create a basis vector with a 1 in the jth row + if qelt(v,j) = minR - 1 then + colAllZeroes?(x,j) => + qsetelt_!(w,l,1) + basis := cons(w,basis) + for k in minC..(j-1) for ll in minR..(l-1) repeat + if qelt(v,k) ^= minR - 1 then + qsetelt_!(w,ll,-qelt(x,qelt(v,k),j)) + qsetelt_!(w,l,1) + basis := cons(w,basis) + j := j - 1; l := l - 1 + basis + + determinant y == + (ndim := nrows y) ^= (ncols y) => + error "determinant: matrix must be square" + -- Gaussian Elimination + ndim = 1 => qelt(y,minRowIndex y,minColIndex y) + x := copy y + minR := minRowIndex x; maxR := maxRowIndex x + minC := minColIndex x; maxC := maxColIndex x + ans : R := 1 + for i in minR..(maxR - 1) for j in minC..(maxC - 1) repeat + if qelt(x,i,j) = 0 then + rown := minR - 1 + for k in (i+1)..maxR repeat + qelt(x,k,j) ^= 0 => leave (rown := k) + if rown = minR - 1 then return 0 + swapRows_!(x,i,rown); ans := -ans + ans := qelt(x,i,j) * ans; b := -inv qelt(x,i,j) + for l in (j+1)..maxC repeat qsetelt_!(x,i,l,b * qelt(x,i,l)) + for k in (i+1)..maxR repeat + if (b := qelt(x,k,j)) ^= 0 then + for l in (j+1)..maxC repeat + qsetelt_!(x,k,l,qelt(x,k,l) + b * qelt(x,i,l)) + qelt(x,maxR,maxC) * ans + + generalizedInverse(x) == + SUP:=SparseUnivariatePolynomial R + FSUP := Fraction SUP + VFSUP := Vector FSUP + MATCAT2 := MatrixCategoryFunctions2(R, Row, Col, M, + FSUP, VFSUP, VFSUP, Matrix FSUP) + MATCAT22 := MatrixCategoryFunctions2(FSUP, VFSUP, VFSUP, Matrix FSUP, + R, Row, Col, M) + y:= map(coerce(coerce(#1)$SUP)$(Fraction SUP),x)$MATCAT2 + ty:=transpose y + yy:=ty*y + nc:=ncols yy + var:=monomial(1,1)$SUP ::(Fraction SUP) + yy:=inverse(yy+scalarMatrix(ncols yy,var))::Matrix(FSUP)*ty + map(elt(#1,0),yy)$MATCAT22 + + inverse x == + (ndim := nrows x) ^= (ncols x) => + error "inverse: matrix must be square" + ndim = 2 => + ans2 : M := zero(ndim, ndim) + zero?(det := x(1,1)*x(2,2)-x(1,2)*x(2,1)) => "failed" + detinv := inv det + ans2(1,1) := x(2,2)*detinv + ans2(1,2) := -x(1,2)*detinv + ans2(2,1) := -x(2,1)*detinv + ans2(2,2) := x(1,1)*detinv + ans2 + AB : M := zero(ndim,ndim + ndim) + minR := minRowIndex x; maxR := maxRowIndex x + minC := minColIndex x; maxC := maxColIndex x + kmin := minRowIndex AB; kmax := kmin + ndim - 1 + lmin := minColIndex AB; lmax := lmin + ndim - 1 + for i in minR..maxR for k in kmin..kmax repeat + for j in minC..maxC for l in lmin..lmax repeat + qsetelt_!(AB,k,l,qelt(x,i,j)) + qsetelt_!(AB,k,lmin + ndim + k - kmin,1) + AB := rowEchelon AB + elt(AB,kmax,lmax) = 0 => "failed" + subMatrix(AB,kmin,kmax,lmin + ndim,lmax + ndim) + +@ +\section{package MATCAT2 MatrixCategoryFunctions2} +<<package MATCAT2 MatrixCategoryFunctions2>>= +)abbrev package MATCAT2 MatrixCategoryFunctions2 +++ Author: Clifton J. Williamson +++ Date Created: 21 November 1989 +++ Date Last Updated: 21 March 1994 +++ Basic Operations: +++ Related Domains: IndexedMatrix(R,minRow,minCol), Matrix(R), +++ RectangularMatrix(n,m,R), SquareMatrix(n,R) +++ Also See: +++ AMS Classifications: +++ Keywords: +++ Keywords: matrix, map, reduce +++ Examples: +++ References: +++ Description: +++ \spadtype{MatrixCategoryFunctions2} provides functions between two matrix +++ domains. The functions provided are \spadfun{map} and \spadfun{reduce}. +MatrixCategoryFunctions2(R1,Row1,Col1,M1,R2,Row2,Col2,M2):_ + Exports == Implementation where + R1 : Ring + Row1 : FiniteLinearAggregate R1 + Col1 : FiniteLinearAggregate R1 + M1 : MatrixCategory(R1,Row1,Col1) + R2 : Ring + Row2 : FiniteLinearAggregate R2 + Col2 : FiniteLinearAggregate R2 + M2 : MatrixCategory(R2,Row2,Col2) + + Exports ==> with + map: (R1 -> R2,M1) -> M2 + ++ \spad{map(f,m)} applies the function f to the elements of the matrix m. + map: (R1 -> Union(R2,"failed"),M1) -> Union(M2,"failed") + ++ \spad{map(f,m)} applies the function f to the elements of the matrix m. + reduce: ((R1,R2) -> R2,M1,R2) -> R2 + ++ \spad{reduce(f,m,r)} returns a matrix n where + ++ \spad{n[i,j] = f(m[i,j],r)} for all indices i and j. + + Implementation ==> add + minr ==> minRowIndex + maxr ==> maxRowIndex + minc ==> minColIndex + maxc ==> maxColIndex + + map(f:(R1->R2),m:M1):M2 == + ans : M2 := new(nrows m,ncols m,0) + for i in minr(m)..maxr(m) for k in minr(ans)..maxr(ans) repeat + for j in minc(m)..maxc(m) for l in minc(ans)..maxc(ans) repeat + qsetelt_!(ans,k,l,f qelt(m,i,j)) + ans + + map(f:(R1 -> (Union(R2,"failed"))),m:M1):Union(M2,"failed") == + ans : M2 := new(nrows m,ncols m,0) + for i in minr(m)..maxr(m) for k in minr(ans)..maxr(ans) repeat + for j in minc(m)..maxc(m) for l in minc(ans)..maxc(ans) repeat + (r := f qelt(m,i,j)) = "failed" => return "failed" + qsetelt_!(ans,k,l,r::R2) + ans + + reduce(f,m,ident) == + s := ident + for i in minr(m)..maxr(m) repeat + for j in minc(m)..maxc(m) repeat + s := f(qelt(m,i,j),s) + s + +@ +\section{package RMCAT2 RectangularMatrixCategoryFunctions2} +<<package RMCAT2 RectangularMatrixCategoryFunctions2>>= +)abbrev package RMCAT2 RectangularMatrixCategoryFunctions2 +++ Author: Clifton J. Williamson +++ Date Created: 21 November 1989 +++ Date Last Updated: 12 June 1991 +++ Basic Operations: +++ Related Domains: IndexedMatrix(R,minRow,minCol), Matrix(R), +++ RectangularMatrix(n,m,R), SquareMatrix(n,R) +++ Also See: +++ AMS Classifications: +++ Keywords: +++ Keywords: matrix, map, reduce +++ Examples: +++ References: +++ Description: +++ \spadtype{RectangularMatrixCategoryFunctions2} provides functions between +++ two matrix domains. The functions provided are \spadfun{map} and \spadfun{reduce}. + +RectangularMatrixCategoryFunctions2(m,n,R1,Row1,Col1,M1,R2,Row2,Col2,M2):_ + Exports == Implementation where + m,n : NonNegativeInteger + R1 : Ring + Row1 : DirectProductCategory(n, R1) + Col1 : DirectProductCategory(m, R1) + M1 : RectangularMatrixCategory(m,n,R1,Row1,Col1) + R2 : Ring + Row2 : DirectProductCategory(n, R2) + Col2 : DirectProductCategory(m, R2) + M2 : RectangularMatrixCategory(m,n,R2,Row2,Col2) + + Exports ==> with + map: (R1 -> R2,M1) -> M2 + ++ \spad{map(f,m)} applies the function \spad{f} to the elements of the + ++ matrix \spad{m}. + reduce: ((R1,R2) -> R2,M1,R2) -> R2 + ++ \spad{reduce(f,m,r)} returns a matrix \spad{n} where + ++ \spad{n[i,j] = f(m[i,j],r)} for all indices spad{i} and \spad{j}. + + Implementation ==> add + minr ==> minRowIndex + maxr ==> maxRowIndex + minc ==> minColIndex + maxc ==> maxColIndex + + map(f,mat) == + ans : M2 := new(m,n,0)$Matrix(R2) pretend M2 + for i in minr(mat)..maxr(mat) for k in minr(ans)..maxr(ans) repeat + for j in minc(mat)..maxc(mat) for l in minc(ans)..maxc(ans) repeat + qsetelt_!(ans pretend Matrix R2,k,l,f qelt(mat,i,j)) + ans + + reduce(f,mat,ident) == + s := ident + for i in minr(mat)..maxr(mat) repeat + for j in minc(mat)..maxc(mat) repeat + s := f(qelt(mat,i,j),s) + s + +@ +\section{package IMATQF InnerMatrixQuotientFieldFunctions} +<<package IMATQF InnerMatrixQuotientFieldFunctions>>= +)abbrev package IMATQF InnerMatrixQuotientFieldFunctions +++ Author: Clifton J. Williamson +++ Date Created: 22 November 1989 +++ Date Last Updated: 22 November 1989 +++ Basic Operations: +++ Related Domains: IndexedMatrix(R,minRow,minCol), Matrix(R), RectangularMatrix(n,m,R), SquareMatrix(n,R) +++ Also See: +++ AMS Classifications: +++ Keywords: matrix, inverse, integral domain +++ Examples: +++ References: +++ Description: +++ \spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices +++ over an integral domain which involve the quotient field of that integral +++ domain. The functions rowEchelon and inverse return matrices with +++ entries in the quotient field. +InnerMatrixQuotientFieldFunctions(R,Row,Col,M,QF,Row2,Col2,M2):_ + Exports == Implementation where + R : IntegralDomain + Row : FiniteLinearAggregate R + Col : FiniteLinearAggregate R + M : MatrixCategory(R,Row,Col) + QF : QuotientFieldCategory R + Row2 : FiniteLinearAggregate QF + Col2 : FiniteLinearAggregate QF + M2 : MatrixCategory(QF,Row2,Col2) + IMATLIN ==> InnerMatrixLinearAlgebraFunctions(QF,Row2,Col2,M2) + MATCAT2 ==> MatrixCategoryFunctions2(R,Row,Col,M,QF,Row2,Col2,M2) + CDEN ==> InnerCommonDenominator(R,QF,Col,Col2) + + Exports ==> with + rowEchelon: M -> M2 + ++ \spad{rowEchelon(m)} returns the row echelon form of the matrix m. + ++ the result will have entries in the quotient field. + inverse: M -> Union(M2,"failed") + ++ \spad{inverse(m)} returns the inverse of the matrix m. + ++ If the matrix is not invertible, "failed" is returned. + ++ Error: if the matrix is not square. + ++ Note: the result will have entries in the quotient field. + if Col2 has shallowlyMutable then + nullSpace : M -> List Col + ++ \spad{nullSpace(m)} returns a basis for the null space of the + ++ matrix m. + Implementation ==> add + + qfMat: M -> M2 + qfMat m == map(#1 :: QF,m)$MATCAT2 + + rowEchelon m == rowEchelon(qfMat m)$IMATLIN + inverse m == + (inv := inverse(qfMat m)$IMATLIN) case "failed" => "failed" + inv :: M2 + + if Col2 has shallowlyMutable then + nullSpace m == + [clearDenominator(v)$CDEN for v in nullSpace(qfMat m)$IMATLIN] + +@ +\section{package MATLIN MatrixLinearAlgebraFunctions} +<<package MATLIN MatrixLinearAlgebraFunctions>>= +)abbrev package MATLIN MatrixLinearAlgebraFunctions +++ Author: Clifton J. Williamson, P.Gianni +++ Date Created: 13 November 1989 +++ Date Last Updated: December 1992 +++ Basic Operations: +++ Related Domains: IndexedMatrix(R,minRow,minCol), Matrix(R), +++ RectangularMatrix(n,m,R), SquareMatrix(n,R) +++ Also See: +++ AMS Classifications: +++ Keywords: matrix, canonical forms, linear algebra +++ Examples: +++ References: +++ Description: +++ \spadtype{MatrixLinearAlgebraFunctions} provides functions to compute +++ inverses and canonical forms. +MatrixLinearAlgebraFunctions(R,Row,Col,M):Exports == Implementation where + R : CommutativeRing + Row : FiniteLinearAggregate R + Col : FiniteLinearAggregate R + M : MatrixCategory(R,Row,Col) + I ==> Integer + + Exports ==> with + + determinant: M -> R + ++ \spad{determinant(m)} returns the determinant of the matrix m. + ++ an error message is returned if the matrix is not square. + minordet: M -> R + ++ \spad{minordet(m)} computes the determinant of the matrix m using + ++ minors. Error: if the matrix is not square. + elRow1! : (M,I,I) -> M + ++ elRow1!(m,i,j) swaps rows i and j of matrix m : elementary operation + ++ of first kind + elRow2! : (M,R,I,I) -> M + ++ elRow2!(m,a,i,j) adds to row i a*row(m,j) : elementary operation of + ++ second kind. (i ^=j) + elColumn2! : (M,R,I,I) -> M + ++ elColumn2!(m,a,i,j) adds to column i a*column(m,j) : elementary + ++ operation of second kind. (i ^=j) + + if R has IntegralDomain then + rank: M -> NonNegativeInteger + ++ \spad{rank(m)} returns the rank of the matrix m. + nullity: M -> NonNegativeInteger + ++ \spad{nullity(m)} returns the mullity of the matrix m. This is + ++ the dimension of the null space of the matrix m. + nullSpace: M -> List Col + ++ \spad{nullSpace(m)} returns a basis for the null space of the + ++ matrix m. + fractionFreeGauss! : M -> M + ++ \spad{fractionFreeGauss(m)} performs the fraction + ++ free gaussian elimination on the matrix m. + invertIfCan : M -> Union(M,"failed") + ++ \spad{invertIfCan(m)} returns the inverse of m over R + adjoint : M -> Record(adjMat:M, detMat:R) + ++ \spad{adjoint(m)} returns the ajoint matrix of m (i.e. the matrix + ++ n such that m*n = determinant(m)*id) and the detrminant of m. + + if R has EuclideanDomain then + rowEchelon: M -> M + ++ \spad{rowEchelon(m)} returns the row echelon form of the matrix m. + + normalizedDivide: (R, R) -> Record(quotient:R, remainder:R) + ++ normalizedDivide(n,d) returns a normalized quotient and + ++ remainder such that consistently unique representatives + ++ for the residue class are chosen, e.g. positive remainders + + if R has Field then + inverse: M -> Union(M,"failed") + ++ \spad{inverse(m)} returns the inverse of the matrix. + ++ If the matrix is not invertible, "failed" is returned. + ++ Error: if the matrix is not square. + + Implementation ==> add + + rowAllZeroes?: (M,I) -> Boolean + rowAllZeroes?(x,i) == + -- determines if the ith row of x consists only of zeroes + -- internal function: no check on index i + for j in minColIndex(x)..maxColIndex(x) repeat + qelt(x,i,j) ^= 0 => return false + true + + colAllZeroes?: (M,I) -> Boolean + colAllZeroes?(x,j) == + -- determines if the ith column of x consists only of zeroes + -- internal function: no check on index j + for i in minRowIndex(x)..maxRowIndex(x) repeat + qelt(x,i,j) ^= 0 => return false + true + + minorDet:(M,I,List I,I,PrimitiveArray(Union(R,"uncomputed")))-> R + minorDet(x,m,l,i,v) == + z := v.m + z case R => z + ans : R := 0; rl : List I := nil() + j := first l; l := rest l; pos := true + minR := minRowIndex x; minC := minColIndex x; + repeat + if qelt(x,j + minR,i + minC) ^= 0 then + ans := + md := minorDet(x,m - 2**(j :: NonNegativeInteger),_ + concat_!(reverse rl,l),i + 1,v) *_ + qelt(x,j + minR,i + minC) + pos => ans + md + ans - md + null l => + v.m := ans + return ans + pos := not pos; rl := cons(j,rl); j := first l; l := rest l + + minordet x == + (ndim := nrows x) ^= (ncols x) => + error "determinant: matrix must be square" + -- minor expansion with (s---loads of) memory + n1 : I := ndim - 1 + v : PrimitiveArray(Union(R,"uncomputed")) := + new((2**ndim - 1) :: NonNegativeInteger,"uncomputed") + minR := minRowIndex x; maxC := maxColIndex x + for i in 0..n1 repeat + qsetelt_!(v,(2**i - 1),qelt(x,i + minR,maxC)) + minorDet(x, 2**ndim - 2, [i for i in 0..n1], 0, v) + + -- elementary operation of first kind: exchange two rows -- + elRow1!(m:M,i:I,j:I) : M == + vec:=row(m,i) + setRow!(m,i,row(m,j)) + setRow!(m,j,vec) + m + + -- elementary operation of second kind: add to row i-- + -- a*row j (i^=j) -- + elRow2!(m : M,a:R,i:I,j:I) : M == + vec:= map(a*#1,row(m,j)) + vec:=map("+",row(m,i),vec) + setRow!(m,i,vec) + m + -- elementary operation of second kind: add to column i -- + -- a*column j (i^=j) -- + elColumn2!(m : M,a:R,i:I,j:I) : M == + vec:= map(a*#1,column(m,j)) + vec:=map("+",column(m,i),vec) + setColumn!(m,i,vec) + m + + if R has IntegralDomain then + -- Fraction-Free Gaussian Elimination + fractionFreeGauss! x == + (ndim := nrows x) = 1 => x + ans := b := 1$R + minR := minRowIndex x; maxR := maxRowIndex x + minC := minColIndex x; maxC := maxColIndex x + i := minR + for j in minC..maxC repeat + if qelt(x,i,j) = 0 then -- candidate for pivot = 0 + rown := minR - 1 + for k in (i+1)..maxR repeat + if qelt(x,k,j) ^= 0 then + rown := k -- found a pivot + leave + if rown > minR - 1 then + swapRows_!(x,i,rown) + ans := -ans + (c := qelt(x,i,j)) = 0 => "next j" -- try next column + for k in (i+1)..maxR repeat + if qelt(x,k,j) = 0 then + for l in (j+1)..maxC repeat + qsetelt_!(x,k,l,(c * qelt(x,k,l) exquo b) :: R) + else + pv := qelt(x,k,j) + qsetelt_!(x,k,j,0) + for l in (j+1)..maxC repeat + val := c * qelt(x,k,l) - pv * qelt(x,i,l) + qsetelt_!(x,k,l,(val exquo b) :: R) + b := c + (i := i+1)>maxR => leave + if ans=-1 then + lasti := i-1 + for j in 1..maxC repeat x(lasti, j) := -x(lasti,j) + x + + -- + lastStep(x:M) : M == + ndim := nrows x + minR := minRowIndex x; maxR := maxRowIndex x + minC := minColIndex x; maxC := minC+ndim -1 + exCol:=maxColIndex x + det:=x(maxR,maxC) + maxR1:=maxR-1 + maxC1:=maxC+1 + minC1:=minC+1 + iRow:=maxR + iCol:=maxC-1 + for i in maxR1..1 by -1 repeat + for j in maxC1..exCol repeat + ss:=+/[x(i,iCol+k)*x(i+k,j) for k in 1..(maxR-i)] + x(i,j) := _exquo((det * x(i,j) - ss),x(i,iCol))::R + iCol:=iCol-1 + subMatrix(x,minR,maxR,maxC1,exCol) + + invertIfCan(y) == + (nr:=nrows y) ^= (ncols y) => + error "invertIfCan: matrix must be square" + adjRec := adjoint y + (den:=recip(adjRec.detMat)) case "failed" => "failed" + den::R * adjRec.adjMat + + adjoint(y) == + (nr:=nrows y) ^= (ncols y) => error "adjoint: matrix must be square" + maxR := maxRowIndex y + maxC := maxColIndex y + x := horizConcat(copy y,scalarMatrix(nr,1$R)) + ffr:= fractionFreeGauss!(x) + det:=ffr(maxR,maxC) + [lastStep(ffr),det] + + + if R has Field then + + VR ==> Vector R + IMATLIN ==> InnerMatrixLinearAlgebraFunctions(R,Row,Col,M) + MMATLIN ==> InnerMatrixLinearAlgebraFunctions(R,VR,VR,Matrix R) + FLA2 ==> FiniteLinearAggregateFunctions2(R, VR, R, Col) + MAT2 ==> MatrixCategoryFunctions2(R,Row,Col,M,R,VR,VR,Matrix R) + + rowEchelon y == rowEchelon(y)$IMATLIN + rank y == rank(y)$IMATLIN + nullity y == nullity(y)$IMATLIN + determinant y == determinant(y)$IMATLIN + inverse y == inverse(y)$IMATLIN + if Col has shallowlyMutable then + nullSpace y == nullSpace(y)$IMATLIN + else + nullSpace y == + [map(#1, v)$FLA2 for v in nullSpace(map(#1, y)$MAT2)$MMATLIN] + + else if R has IntegralDomain then + QF ==> Fraction R + Row2 ==> Vector QF + Col2 ==> Vector QF + M2 ==> Matrix QF + IMATQF ==> InnerMatrixQuotientFieldFunctions(R,Row,Col,M,QF,Row2,Col2,M2) + + nullSpace m == nullSpace(m)$IMATQF + + determinant y == + (nrows y) ^= (ncols y) => error "determinant: matrix must be square" + fm:=fractionFreeGauss!(copy y) + fm(maxRowIndex fm,maxColIndex fm) + + rank x == + y := + (rk := nrows x) > (rh := ncols x) => + rk := rh + transpose x + copy x + y := fractionFreeGauss! y + i := maxRowIndex y + while rk > 0 and rowAllZeroes?(y,i) repeat + i := i - 1 + rk := (rk - 1) :: NonNegativeInteger + rk :: NonNegativeInteger + + nullity x == (ncols x - rank x) :: NonNegativeInteger + + if R has EuclideanDomain then + + if R has IntegerNumberSystem then + normalizedDivide(n:R, d:R):Record(quotient:R, remainder:R) == + qr := divide(n, d) + qr.remainder >= 0 => qr + d > 0 => + qr.remainder := qr.remainder + d + qr.quotient := qr.quotient - 1 + qr + qr.remainder := qr.remainder - d + qr.quotient := qr.quotient + 1 + qr + else + normalizedDivide(n:R, d:R):Record(quotient:R, remainder:R) == + divide(n, d) + + rowEchelon y == + x := copy y + minR := minRowIndex x; maxR := maxRowIndex x + minC := minColIndex x; maxC := maxColIndex x + n := minR - 1 + i := minR + for j in minC..maxC repeat + if i > maxR then leave x + n := minR - 1 + xnj: R + for k in i..maxR repeat + if not zero?(xkj:=qelt(x,k,j)) and ((n = minR - 1) _ + or sizeLess?(xkj,xnj)) then + n := k + xnj := xkj + n = minR - 1 => "next j" + swapRows_!(x,i,n) + for k in (i+1)..maxR repeat + qelt(x,k,j) = 0 => "next k" + aa := extendedEuclidean(qelt(x,i,j),qelt(x,k,j)) + (a,b,d) := (aa.coef1,aa.coef2,aa.generator) + b1 := (qelt(x,i,j) exquo d) :: R + a1 := (qelt(x,k,j) exquo d) :: R + -- a*b1+a1*b = 1 + for k1 in (j+1)..maxC repeat + val1 := a * qelt(x,i,k1) + b * qelt(x,k,k1) + val2 := -a1 * qelt(x,i,k1) + b1 * qelt(x,k,k1) + qsetelt_!(x,i,k1,val1); qsetelt_!(x,k,k1,val2) + qsetelt_!(x,i,j,d); qsetelt_!(x,k,j,0) + + un := unitNormal qelt(x,i,j) + qsetelt_!(x,i,j,un.canonical) + if un.associate ^= 1 then for jj in (j+1)..maxC repeat + qsetelt_!(x,i,jj,un.associate * qelt(x,i,jj)) + + xij := qelt(x,i,j) + for k in minR..(i-1) repeat + qelt(x,k,j) = 0 => "next k" + qr := normalizedDivide(qelt(x,k,j), xij) + qsetelt_!(x,k,j,qr.remainder) + for k1 in (j+1)..maxC repeat + qsetelt_!(x,k,k1,qelt(x,k,k1) - qr.quotient * qelt(x,i,k1)) + i := i + 1 + x + + else determinant x == minordet x + +@ +\section{License} +<<license>>= +--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ +<<*>>= +<<license>> + +-- This file and MATRIX SPAD must be compiled in bootstrap mode. + +<<package IMATLIN InnerMatrixLinearAlgebraFunctions>> +<<package MATCAT2 MatrixCategoryFunctions2>> +<<package RMCAT2 RectangularMatrixCategoryFunctions2>> +<<package IMATQF InnerMatrixQuotientFieldFunctions>> +<<package MATLIN MatrixLinearAlgebraFunctions>> +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |