aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/logic.spad.pamphlet
diff options
context:
space:
mode:
Diffstat (limited to 'src/algebra/logic.spad.pamphlet')
-rw-r--r--src/algebra/logic.spad.pamphlet546
1 files changed, 546 insertions, 0 deletions
diff --git a/src/algebra/logic.spad.pamphlet b/src/algebra/logic.spad.pamphlet
new file mode 100644
index 00000000..895051f2
--- /dev/null
+++ b/src/algebra/logic.spad.pamphlet
@@ -0,0 +1,546 @@
+\documentclass{article}
+\usepackage{open-axiom}
+
+\title{src/algebra logic.spad}
+\author{Gabriel Dos~Reis}
+
+\section{category LOGIC Logic}
+
+<<category LOGIC Logic>>=
+)abbrev category LOGIC Logic
+++ Author:
+++ Date Created:
+++ Date Last Changed: May 27, 2009
+++ Basic Operations: ~, /\, \/
+++ Related Constructors:
+++ Keywords: boolean
+++ Description:
+++ `Logic' provides the basic operations for lattices,
+++ e.g., boolean algebra.
+Logic: Category == Type with
+ ~: % -> %
+ ++ \spad{~x} returns the logical complement of \spad{x}.
+ /\: (%, %) -> %
+ ++ \spad {x/\y} returns the logical `meet', e.g. conjunction, of
+ ++ \spad{x} and \spad{y}.
+ \/: (%, %) -> %
+ ++ \spad{x\/y} returns the logical `join', e.g. disjunction, or
+ ++ \spad{x} and \spad{y}.
+ add
+ x \/ y == ~(~x /\ ~y)
+
+@
+
+\section{Categories an domains for logic}
+
+<<category BOOLE BooleanLogic>>=
+)abbrev category BOOLE BooleanLogic
+++ Author: Gabriel Dos Reis
+++ Date Created: April 04, 2010
+++ Date Last Modified: April 04, 2010
+++ Description:
+++ This is the category of Boolean logic structures.
+BooleanLogic(): Category == Logic with
+ not: % -> %
+ ++ \spad{not x} returns the complement or negation of \spad{x}.
+ and: (%,%) -> %
+ ++ \spad{x and y} returns the conjunction of \spad{x} and \spad{y}.
+ or: (%,%) -> %
+ ++ \spad{x or y} returns the disjunction of \spad{x} and \spad{y}.
+ add
+ not x == ~ x
+ x and y == x /\ y
+ x or y == x \/ y
+@
+
+<<category PROPLOG PropositionalLogic>>=
+)abbrev category PROPLOG PropositionalLogic
+++ Author: Gabriel Dos Reis
+++ Date Created: Januray 14, 2008
+++ Date Last Modified: May 27, 2009
+++ Description: This category declares the connectives of
+++ Propositional Logic.
+PropositionalLogic(): Category == Join(BooleanLogic,SetCategory) with
+ true: %
+ ++ \spad{true} is a logical constant.
+ false: %
+ ++ \spad{false} is a logical constant.
+ implies: (%,%) -> %
+ ++ \spad{implies(p,q)} returns the logical implication of `q' by `p'.
+ equiv: (%,%) -> %
+ ++ \spad{equiv(p,q)} returns the logical equivalence of `p', `q'.
+@
+
+\section{domain PROPFRML PropositionalFormula}
+<<domain PROPFRML PropositionalFormula>>=
+)set mess autoload on
+)abbrev domain PROPFRML PropositionalFormula
+++ Author: Gabriel Dos Reis
+++ Date Created: Januray 14, 2008
+++ Date Last Modified: February, 2011
+++ Description: This domain implements propositional formula build
+++ over a term domain, that itself belongs to PropositionalLogic
+PropositionalFormula(T: SetCategory): Public == Private where
+ Public == Join(PropositionalLogic, CoercibleFrom T) with
+ isAtom : % -> Maybe T
+ ++ \spad{isAtom f} returns a value \spad{v} such that
+ ++ \spad{v case T} holds if the formula \spad{f} is a term.
+
+ isNot : % -> Maybe %
+ ++ \spad{isNot f} returns a value \spad{v} such that
+ ++ \spad{v case %} holds if the formula \spad{f} is a negation.
+
+ isAnd : % -> Maybe Pair(%,%)
+ ++ \spad{isAnd f} returns a value \spad{v} such that
+ ++ \spad{v case Pair(%,%)} holds if the formula \spad{f}
+ ++ is a conjunction formula.
+
+ isOr : % -> Maybe Pair(%,%)
+ ++ \spad{isOr f} returns a value \spad{v} such that
+ ++ \spad{v case Pair(%,%)} holds if the formula \spad{f}
+ ++ is a disjunction formula.
+
+ isImplies : % -> Maybe Pair(%,%)
+ ++ \spad{isImplies f} returns a value \spad{v} such that
+ ++ \spad{v case Pair(%,%)} holds if the formula \spad{f}
+ ++ is an implication formula.
+
+ isEquiv : % -> Maybe Pair(%,%)
+ ++ \spad{isEquiv f} returns a value \spad{v} such that
+ ++ \spad{v case Pair(%,%)} holds if the formula \spad{f}
+ ++ is an equivalence formula.
+
+ conjunction: (%,%) -> %
+ ++ \spad{conjunction(p,q)} returns a formula denoting the
+ ++ conjunction of \spad{p} and \spad{q}.
+
+ disjunction: (%,%) -> %
+ ++ \spad{disjunction(p,q)} returns a formula denoting the
+ ++ disjunction of \spad{p} and \spad{q}.
+
+ Private == add
+ Rep == Union(T, Kernel %)
+ import Kernel %
+ import BasicOperator
+ import KernelFunctions2(Identifier,%)
+ import List %
+
+ -- Local names for proposition logical operators
+ macro FALSE == '%false
+ macro TRUE == '%true
+ macro NOT == '%not
+ macro AND == '%and
+ macro OR == '%or
+ macro IMP == '%implies
+ macro EQV == '%equiv
+
+ -- Return the nesting level of a formula
+ level(f: %): NonNegativeInteger ==
+ f' := rep f
+ f' case T => 0
+ height f'
+
+ -- A term is a formula
+ coerce(t: T): % ==
+ per t
+
+ false == per constantKernel FALSE
+ true == per constantKernel TRUE
+
+ ~ p ==
+ per kernel(operator(NOT, 1::Arity), [p], 1 + level p)
+
+ conjunction(p,q) ==
+ per kernel(operator(AND, 2), [p, q], 1 + max(level p, level q))
+
+ p /\ q == conjunction(p,q)
+
+ disjunction(p,q) ==
+ per kernel(operator(OR, 2), [p, q], 1 + max(level p, level q))
+
+ p \/ q == disjunction(p,q)
+
+ implies(p,q) ==
+ per kernel(operator(IMP, 2), [p, q], 1 + max(level p, level q))
+
+ equiv(p,q) ==
+ per kernel(operator(EQV, 2), [p, q], 1 + max(level p, level q))
+
+ isAtom f ==
+ f' := rep f
+ f' case T => just(f'@T)
+ nothing
+
+ isNot f ==
+ f' := rep f
+ f' case Kernel(%) and is?(f', NOT) => just(first argument f')
+ nothing
+
+ isBinaryOperator(f: Kernel %, op: Symbol): Maybe Pair(%, %) ==
+ not is?(f, op) => nothing
+ args := argument f
+ just pair(first args, second args)
+
+ isAnd f ==
+ f' := rep f
+ f' case Kernel % => isBinaryOperator(f', AND)
+ nothing
+
+ isOr f ==
+ f' := rep f
+ f' case Kernel % => isBinaryOperator(f', OR)
+ nothing
+
+ isImplies f ==
+ f' := rep f
+ f' case Kernel % => isBinaryOperator(f', IMP)
+ nothing
+
+
+ isEquiv f ==
+ f' := rep f
+ f' case Kernel % => isBinaryOperator(f', EQV)
+ nothing
+
+ -- Unparsing grammar.
+ --
+ -- Ideally, the following syntax would the external form
+ -- Formula:
+ -- EquivFormula
+ --
+ -- EquivFormula:
+ -- ImpliesFormula
+ -- ImpliesFormula <=> EquivFormula
+ --
+ -- ImpliesFormula:
+ -- OrFormula
+ -- OrFormula => ImpliesFormula
+ --
+ -- OrFormula:
+ -- AndFormula
+ -- AndFormula or OrFormula
+ --
+ -- AndFormula
+ -- NotFormula
+ -- NotFormula and AndFormula
+ --
+ -- NotFormula:
+ -- PrimaryFormula
+ -- not NotFormula
+ --
+ -- PrimaryFormula:
+ -- Term
+ -- ( Formula )
+ --
+ -- Note: Since the token '=>' already means a construct different
+ -- from what we would like to have as a notation for
+ -- propositional logic, we will output the formula `p => q'
+ -- as implies(p,q), which looks like a function call.
+ -- Similarly, we do not have the token `<=>' for logical
+ -- equivalence; so we unparser `p <=> q' as equiv(p,q).
+ --
+ -- So, we modify the nonterminal PrimaryFormula to read
+ -- PrimaryFormula:
+ -- Term
+ -- implies(Formula, Formula)
+ -- equiv(Formula, Formula)
+ formula: % -> OutputForm
+ coerce(p: %): OutputForm ==
+ formula p
+
+ primaryFormula(p: %): OutputForm ==
+ p' := rep p
+ p' case T => p'@T::OutputForm
+ case constantIfCan p' is
+ c@Identifier => c::OutputForm
+ otherwise =>
+ is?(p', IMP) or is?(p', EQV) =>
+ args := argument p'
+ elt(operator(p')::OutputForm,
+ [formula first args, formula second args])$OutputForm
+ paren(formula p)$OutputForm
+
+ notFormula(p: %): OutputForm ==
+ case isNot p is
+ f@% => elt(outputForm 'not, [notFormula f])$OutputForm
+ otherwise => primaryFormula p
+
+ andFormula(f: %): OutputForm ==
+ case isAnd f is
+ p@Pair(%,%) =>
+ -- ??? idealy, we should be using `and$OutputForm' but
+ -- ??? a bug in the compiler currently prevents that.
+ infix(outputForm 'and, notFormula first p,
+ andFormula second p)$OutputForm
+ otherwise => notFormula f
+
+ orFormula(f: %): OutputForm ==
+ case isOr f is
+ p@Pair(%,%) =>
+ -- ??? idealy, we should be using `or$OutputForm' but
+ -- ??? a bug in the compiler currently prevents that.
+ infix(outputForm 'or, andFormula first p,
+ orFormula second p)$OutputForm
+ otherwise => andFormula f
+
+ formula f ==
+ -- Note: this should be equivFormula, but see the explanation above.
+ orFormula f
+
+@
+
+<<package PROPFUN1 PropositionalFormulaFunctions1>>=
+)abbrev package PROPFUN1 PropositionalFormulaFunctions1
+++ Author: Gabriel Dos Reis
+++ Date Created: April 03, 2010
+++ Date Last Modified: April 03, 2010
+++ Description:
+++ This package collects unary functions operating on propositional
+++ formulae.
+PropositionalFormulaFunctions1(T): Public == Private where
+ T: SetCategory
+ Public == Type with
+ dual: PropositionalFormula T -> PropositionalFormula T
+ ++ \spad{dual f} returns the dual of the proposition \spad{f}.
+ atoms: PropositionalFormula T -> Set T
+ ++ \spad{atoms f} ++ returns the set of atoms appearing in
+ ++ the formula \spad{f}.
+ simplify: PropositionalFormula T -> PropositionalFormula T
+ ++ \spad{simplify f} returns a formula logically equivalent
+ ++ to \spad{f} where obvious tautologies have been removed.
+ Private == add
+ macro F == PropositionalFormula T
+ inline Pair(F,F)
+
+ dual f ==
+ f = true$F => false$F
+ f = false$F => true$F
+ isAtom f case T => f
+ (f1 := isNot f) case F => not dual f1
+ (f2 := isAnd f) case Pair(F,F) =>
+ disjunction(dual first f2, dual second f2)
+ (f2 := isOr f) case Pair(F,F) =>
+ conjunction(dual first f2, dual second f2)
+ error "formula contains `equiv' or `implies'"
+
+ atoms f ==
+ (t := isAtom f) case T => { t }
+ (f1 := isNot f) case F => atoms f1
+ (f2 := isAnd f) case Pair(F,F) =>
+ union(atoms first f2, atoms second f2)
+ (f2 := isOr f) case Pair(F,F) =>
+ union(atoms first f2, atoms second f2)
+ empty()$Set(T)
+
+ -- one-step simplification helper function
+ simplifyOneStep(f: F): F ==
+ (f1 := isNot f) case F =>
+ f1 = true$F => false$F
+ f1 = false$F => true$F
+ (f1' := isNot f1) case F => f1' -- assume classical logic
+ f
+ (f2 := isAnd f) case Pair(F,F) =>
+ first f2 = false$F or second f2 = false$F => false$F
+ first f2 = true$F => second f2
+ second f2 = true$F => first f2
+ f
+ (f2 := isOr f) case Pair(F,F) =>
+ first f2 = false$F => second f2
+ second f2 = false$F => first f2
+ first f2 = true$F or second f2 = true$F => true$F
+ f
+ (f2 := isImplies f) case Pair(F,F) =>
+ first f2 = false$F or second f2 = true$F => true$F
+ first f2 = true$F => second f2
+ second f2 = false$F => not first f2
+ f
+ (f2 := isEquiv f) case Pair(F,F) =>
+ first f2 = true$F => second f2
+ second f2 = true$F => first f2
+ first f2 = false$F => not second f2
+ second f2 = false$F => not first f2
+ f
+ f
+
+ simplify f ==
+ (f1 := isNot f) case F => simplifyOneStep(not simplify f1)
+ (f2 := isAnd f) case Pair(F,F) =>
+ simplifyOneStep(conjunction(simplify first f2, simplify second f2))
+ (f2 := isOr f) case Pair(F,F) =>
+ simplifyOneStep(disjunction(simplify first f2, simplify second f2))
+ (f2 := isImplies f) case Pair(F,F) =>
+ simplifyOneStep(implies(simplify first f2, simplify second f2))
+ (f2 := isEquiv f) case Pair(F,F) =>
+ simplifyOneStep(equiv(simplify first f2, simplify second f2))
+ f
+@
+
+<<package PROPFUN2 PropositionalFormulaFunctions2>>=
+)abbrev package PROPFUN2 PropositionalFormulaFunctions2
+++ Author: Gabriel Dos Reis
+++ Date Created: April 03, 2010
+++ Date Last Modified: April 03, 2010
+++ Description:
+++ This package collects binary functions operating on propositional
+++ formulae.
+PropositionalFormulaFunctions2(S,T): Public == Private where
+ S: SetCategory
+ T: SetCategory
+ Public == Type with
+ map: (S -> T, PropositionalFormula S) -> PropositionalFormula T
+ ++ \spad{map(f,x)} returns a propositional formula where
+ ++ all atoms in \spad{x} have been replaced by the result
+ ++ of applying the function \spad{f} to them.
+ Private == add
+ macro FS == PropositionalFormula S
+ macro FT == PropositionalFormula T
+ map(f,x) ==
+ x = true$FS => true$FT
+ x = false$FS => false$FT
+ (t := isAtom x) case S => f(t)::FT
+ (f1 := isNot x) case FS => not map(f,f1)
+ (f2 := isAnd x) case Pair(FS,FS) =>
+ conjunction(map(f,first f2), map(f,second f2))
+ (f2 := isOr x) case Pair(FS,FS) =>
+ disjunction(map(f,first f2), map(f,second f2))
+ (f2 := isImplies x) case Pair(FS,FS) =>
+ implies(map(f,first f2), map(f,second f2))
+ (f2 := isEquiv x) case Pair(FS,FS) =>
+ equiv(map(f,first f2), map(f,second f2))
+ error "invalid propositional formula"
+
+@
+
+
+\section{Kleene's Three-Valued Logic}
+<<domain KTVLOGIC KleeneTrivalentLogic>>=
+)abbrev domain KTVLOGIC KleeneTrivalentLogic
+++ Author: Gabriel Dos Reis
+++ Date Created: September 20, 2008
+++ Date Last Modified: January 14, 2012
+++ Description:
+++ This domain implements Kleene's 3-valued propositional logic.
+KleeneTrivalentLogic(): Public == Private where
+ Public == Join(PropositionalLogic,Finite) with
+ unknown: % ++ the indefinite `unknown'
+ case: (%,[| false |]) -> Boolean
+ ++ x case false holds if the value of `x' is `false'
+ case: (%,[| unknown |]) -> Boolean
+ ++ x case unknown holds if the value of `x' is `unknown'
+ case: (%,[| true |]) -> Boolean
+ ++ s case true holds if the value of `x' is `true'.
+ Private == Maybe Boolean add
+ false == per just(false@Boolean)
+ unknown == per nothing
+ true == per just(true@Boolean)
+ x = y == rep x = rep y
+ x case true == x = true@%
+ x case false == x = false@%
+ x case unknown == x = unknown
+
+ not x ==
+ x case false => true
+ x case unknown => unknown
+ false
+
+ x and y ==
+ x case false => false
+ x case unknown =>
+ y case false => false
+ unknown
+ y
+
+ x or y ==
+ x case false => y
+ x case true => x
+ y case true => y
+ unknown
+
+ implies(x,y) ==
+ x case false => true
+ x case true => y
+ y case true => true
+ unknown
+
+ equiv(x,y) ==
+ x case unknown => x
+ x case true => y
+ not y
+
+ coerce(x: %): OutputForm ==
+ case rep x is
+ y@Boolean => y::OutputForm
+ otherwise => outputForm 'unknown
+
+ size() == 3
+
+ index n ==
+ n > 3 => error "index: argument out of bound"
+ n = 1 => false
+ n = 2 => unknown
+ true
+
+ lookup x ==
+ x = false => 1
+ x = unknown => 2
+ 3
+@
+
+\section{License}
+
+<<license>>=
+--Copyright (C) 1991-2002, The Numerical Algorithms Group Ltd.
+--All rights reserved.
+--Copyright (C) 2007-2013, Gabriel Dos Reis.
+--All rights reserved.
+--
+--Redistribution and use in source and binary forms, with or without
+--modification, are permitted provided that the following conditions are
+--met:
+--
+-- - Redistributions of source code must retain the above copyright
+-- notice, this list of conditions and the following disclaimer.
+--
+-- - Redistributions in binary form must reproduce the above copyright
+-- notice, this list of conditions and the following disclaimer in
+-- the documentation and/or other materials provided with the
+-- distribution.
+--
+-- - Neither the name of The Numerical Algorithms Group Ltd. nor the
+-- names of its contributors may be used to endorse or promote products
+-- derived from this software without specific prior written permission.
+--
+--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+@
+<<*>>=
+<<license>>
+
+<<category LOGIC Logic>>
+<<category BOOLE BooleanLogic>>
+
+<<category PROPLOG PropositionalLogic>>
+<<domain PROPFRML PropositionalFormula>>
+<<package PROPFUN1 PropositionalFormulaFunctions1>>
+<<package PROPFUN2 PropositionalFormulaFunctions2>>
+
+<<domain KTVLOGIC KleeneTrivalentLogic>>
+
+@
+
+
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} nothing
+\end{thebibliography}
+\end{document}
+