diff options
Diffstat (limited to 'src/algebra/logic.spad.pamphlet')
-rw-r--r-- | src/algebra/logic.spad.pamphlet | 546 |
1 files changed, 546 insertions, 0 deletions
diff --git a/src/algebra/logic.spad.pamphlet b/src/algebra/logic.spad.pamphlet new file mode 100644 index 00000000..895051f2 --- /dev/null +++ b/src/algebra/logic.spad.pamphlet @@ -0,0 +1,546 @@ +\documentclass{article} +\usepackage{open-axiom} + +\title{src/algebra logic.spad} +\author{Gabriel Dos~Reis} + +\section{category LOGIC Logic} + +<<category LOGIC Logic>>= +)abbrev category LOGIC Logic +++ Author: +++ Date Created: +++ Date Last Changed: May 27, 2009 +++ Basic Operations: ~, /\, \/ +++ Related Constructors: +++ Keywords: boolean +++ Description: +++ `Logic' provides the basic operations for lattices, +++ e.g., boolean algebra. +Logic: Category == Type with + ~: % -> % + ++ \spad{~x} returns the logical complement of \spad{x}. + /\: (%, %) -> % + ++ \spad {x/\y} returns the logical `meet', e.g. conjunction, of + ++ \spad{x} and \spad{y}. + \/: (%, %) -> % + ++ \spad{x\/y} returns the logical `join', e.g. disjunction, or + ++ \spad{x} and \spad{y}. + add + x \/ y == ~(~x /\ ~y) + +@ + +\section{Categories an domains for logic} + +<<category BOOLE BooleanLogic>>= +)abbrev category BOOLE BooleanLogic +++ Author: Gabriel Dos Reis +++ Date Created: April 04, 2010 +++ Date Last Modified: April 04, 2010 +++ Description: +++ This is the category of Boolean logic structures. +BooleanLogic(): Category == Logic with + not: % -> % + ++ \spad{not x} returns the complement or negation of \spad{x}. + and: (%,%) -> % + ++ \spad{x and y} returns the conjunction of \spad{x} and \spad{y}. + or: (%,%) -> % + ++ \spad{x or y} returns the disjunction of \spad{x} and \spad{y}. + add + not x == ~ x + x and y == x /\ y + x or y == x \/ y +@ + +<<category PROPLOG PropositionalLogic>>= +)abbrev category PROPLOG PropositionalLogic +++ Author: Gabriel Dos Reis +++ Date Created: Januray 14, 2008 +++ Date Last Modified: May 27, 2009 +++ Description: This category declares the connectives of +++ Propositional Logic. +PropositionalLogic(): Category == Join(BooleanLogic,SetCategory) with + true: % + ++ \spad{true} is a logical constant. + false: % + ++ \spad{false} is a logical constant. + implies: (%,%) -> % + ++ \spad{implies(p,q)} returns the logical implication of `q' by `p'. + equiv: (%,%) -> % + ++ \spad{equiv(p,q)} returns the logical equivalence of `p', `q'. +@ + +\section{domain PROPFRML PropositionalFormula} +<<domain PROPFRML PropositionalFormula>>= +)set mess autoload on +)abbrev domain PROPFRML PropositionalFormula +++ Author: Gabriel Dos Reis +++ Date Created: Januray 14, 2008 +++ Date Last Modified: February, 2011 +++ Description: This domain implements propositional formula build +++ over a term domain, that itself belongs to PropositionalLogic +PropositionalFormula(T: SetCategory): Public == Private where + Public == Join(PropositionalLogic, CoercibleFrom T) with + isAtom : % -> Maybe T + ++ \spad{isAtom f} returns a value \spad{v} such that + ++ \spad{v case T} holds if the formula \spad{f} is a term. + + isNot : % -> Maybe % + ++ \spad{isNot f} returns a value \spad{v} such that + ++ \spad{v case %} holds if the formula \spad{f} is a negation. + + isAnd : % -> Maybe Pair(%,%) + ++ \spad{isAnd f} returns a value \spad{v} such that + ++ \spad{v case Pair(%,%)} holds if the formula \spad{f} + ++ is a conjunction formula. + + isOr : % -> Maybe Pair(%,%) + ++ \spad{isOr f} returns a value \spad{v} such that + ++ \spad{v case Pair(%,%)} holds if the formula \spad{f} + ++ is a disjunction formula. + + isImplies : % -> Maybe Pair(%,%) + ++ \spad{isImplies f} returns a value \spad{v} such that + ++ \spad{v case Pair(%,%)} holds if the formula \spad{f} + ++ is an implication formula. + + isEquiv : % -> Maybe Pair(%,%) + ++ \spad{isEquiv f} returns a value \spad{v} such that + ++ \spad{v case Pair(%,%)} holds if the formula \spad{f} + ++ is an equivalence formula. + + conjunction: (%,%) -> % + ++ \spad{conjunction(p,q)} returns a formula denoting the + ++ conjunction of \spad{p} and \spad{q}. + + disjunction: (%,%) -> % + ++ \spad{disjunction(p,q)} returns a formula denoting the + ++ disjunction of \spad{p} and \spad{q}. + + Private == add + Rep == Union(T, Kernel %) + import Kernel % + import BasicOperator + import KernelFunctions2(Identifier,%) + import List % + + -- Local names for proposition logical operators + macro FALSE == '%false + macro TRUE == '%true + macro NOT == '%not + macro AND == '%and + macro OR == '%or + macro IMP == '%implies + macro EQV == '%equiv + + -- Return the nesting level of a formula + level(f: %): NonNegativeInteger == + f' := rep f + f' case T => 0 + height f' + + -- A term is a formula + coerce(t: T): % == + per t + + false == per constantKernel FALSE + true == per constantKernel TRUE + + ~ p == + per kernel(operator(NOT, 1::Arity), [p], 1 + level p) + + conjunction(p,q) == + per kernel(operator(AND, 2), [p, q], 1 + max(level p, level q)) + + p /\ q == conjunction(p,q) + + disjunction(p,q) == + per kernel(operator(OR, 2), [p, q], 1 + max(level p, level q)) + + p \/ q == disjunction(p,q) + + implies(p,q) == + per kernel(operator(IMP, 2), [p, q], 1 + max(level p, level q)) + + equiv(p,q) == + per kernel(operator(EQV, 2), [p, q], 1 + max(level p, level q)) + + isAtom f == + f' := rep f + f' case T => just(f'@T) + nothing + + isNot f == + f' := rep f + f' case Kernel(%) and is?(f', NOT) => just(first argument f') + nothing + + isBinaryOperator(f: Kernel %, op: Symbol): Maybe Pair(%, %) == + not is?(f, op) => nothing + args := argument f + just pair(first args, second args) + + isAnd f == + f' := rep f + f' case Kernel % => isBinaryOperator(f', AND) + nothing + + isOr f == + f' := rep f + f' case Kernel % => isBinaryOperator(f', OR) + nothing + + isImplies f == + f' := rep f + f' case Kernel % => isBinaryOperator(f', IMP) + nothing + + + isEquiv f == + f' := rep f + f' case Kernel % => isBinaryOperator(f', EQV) + nothing + + -- Unparsing grammar. + -- + -- Ideally, the following syntax would the external form + -- Formula: + -- EquivFormula + -- + -- EquivFormula: + -- ImpliesFormula + -- ImpliesFormula <=> EquivFormula + -- + -- ImpliesFormula: + -- OrFormula + -- OrFormula => ImpliesFormula + -- + -- OrFormula: + -- AndFormula + -- AndFormula or OrFormula + -- + -- AndFormula + -- NotFormula + -- NotFormula and AndFormula + -- + -- NotFormula: + -- PrimaryFormula + -- not NotFormula + -- + -- PrimaryFormula: + -- Term + -- ( Formula ) + -- + -- Note: Since the token '=>' already means a construct different + -- from what we would like to have as a notation for + -- propositional logic, we will output the formula `p => q' + -- as implies(p,q), which looks like a function call. + -- Similarly, we do not have the token `<=>' for logical + -- equivalence; so we unparser `p <=> q' as equiv(p,q). + -- + -- So, we modify the nonterminal PrimaryFormula to read + -- PrimaryFormula: + -- Term + -- implies(Formula, Formula) + -- equiv(Formula, Formula) + formula: % -> OutputForm + coerce(p: %): OutputForm == + formula p + + primaryFormula(p: %): OutputForm == + p' := rep p + p' case T => p'@T::OutputForm + case constantIfCan p' is + c@Identifier => c::OutputForm + otherwise => + is?(p', IMP) or is?(p', EQV) => + args := argument p' + elt(operator(p')::OutputForm, + [formula first args, formula second args])$OutputForm + paren(formula p)$OutputForm + + notFormula(p: %): OutputForm == + case isNot p is + f@% => elt(outputForm 'not, [notFormula f])$OutputForm + otherwise => primaryFormula p + + andFormula(f: %): OutputForm == + case isAnd f is + p@Pair(%,%) => + -- ??? idealy, we should be using `and$OutputForm' but + -- ??? a bug in the compiler currently prevents that. + infix(outputForm 'and, notFormula first p, + andFormula second p)$OutputForm + otherwise => notFormula f + + orFormula(f: %): OutputForm == + case isOr f is + p@Pair(%,%) => + -- ??? idealy, we should be using `or$OutputForm' but + -- ??? a bug in the compiler currently prevents that. + infix(outputForm 'or, andFormula first p, + orFormula second p)$OutputForm + otherwise => andFormula f + + formula f == + -- Note: this should be equivFormula, but see the explanation above. + orFormula f + +@ + +<<package PROPFUN1 PropositionalFormulaFunctions1>>= +)abbrev package PROPFUN1 PropositionalFormulaFunctions1 +++ Author: Gabriel Dos Reis +++ Date Created: April 03, 2010 +++ Date Last Modified: April 03, 2010 +++ Description: +++ This package collects unary functions operating on propositional +++ formulae. +PropositionalFormulaFunctions1(T): Public == Private where + T: SetCategory + Public == Type with + dual: PropositionalFormula T -> PropositionalFormula T + ++ \spad{dual f} returns the dual of the proposition \spad{f}. + atoms: PropositionalFormula T -> Set T + ++ \spad{atoms f} ++ returns the set of atoms appearing in + ++ the formula \spad{f}. + simplify: PropositionalFormula T -> PropositionalFormula T + ++ \spad{simplify f} returns a formula logically equivalent + ++ to \spad{f} where obvious tautologies have been removed. + Private == add + macro F == PropositionalFormula T + inline Pair(F,F) + + dual f == + f = true$F => false$F + f = false$F => true$F + isAtom f case T => f + (f1 := isNot f) case F => not dual f1 + (f2 := isAnd f) case Pair(F,F) => + disjunction(dual first f2, dual second f2) + (f2 := isOr f) case Pair(F,F) => + conjunction(dual first f2, dual second f2) + error "formula contains `equiv' or `implies'" + + atoms f == + (t := isAtom f) case T => { t } + (f1 := isNot f) case F => atoms f1 + (f2 := isAnd f) case Pair(F,F) => + union(atoms first f2, atoms second f2) + (f2 := isOr f) case Pair(F,F) => + union(atoms first f2, atoms second f2) + empty()$Set(T) + + -- one-step simplification helper function + simplifyOneStep(f: F): F == + (f1 := isNot f) case F => + f1 = true$F => false$F + f1 = false$F => true$F + (f1' := isNot f1) case F => f1' -- assume classical logic + f + (f2 := isAnd f) case Pair(F,F) => + first f2 = false$F or second f2 = false$F => false$F + first f2 = true$F => second f2 + second f2 = true$F => first f2 + f + (f2 := isOr f) case Pair(F,F) => + first f2 = false$F => second f2 + second f2 = false$F => first f2 + first f2 = true$F or second f2 = true$F => true$F + f + (f2 := isImplies f) case Pair(F,F) => + first f2 = false$F or second f2 = true$F => true$F + first f2 = true$F => second f2 + second f2 = false$F => not first f2 + f + (f2 := isEquiv f) case Pair(F,F) => + first f2 = true$F => second f2 + second f2 = true$F => first f2 + first f2 = false$F => not second f2 + second f2 = false$F => not first f2 + f + f + + simplify f == + (f1 := isNot f) case F => simplifyOneStep(not simplify f1) + (f2 := isAnd f) case Pair(F,F) => + simplifyOneStep(conjunction(simplify first f2, simplify second f2)) + (f2 := isOr f) case Pair(F,F) => + simplifyOneStep(disjunction(simplify first f2, simplify second f2)) + (f2 := isImplies f) case Pair(F,F) => + simplifyOneStep(implies(simplify first f2, simplify second f2)) + (f2 := isEquiv f) case Pair(F,F) => + simplifyOneStep(equiv(simplify first f2, simplify second f2)) + f +@ + +<<package PROPFUN2 PropositionalFormulaFunctions2>>= +)abbrev package PROPFUN2 PropositionalFormulaFunctions2 +++ Author: Gabriel Dos Reis +++ Date Created: April 03, 2010 +++ Date Last Modified: April 03, 2010 +++ Description: +++ This package collects binary functions operating on propositional +++ formulae. +PropositionalFormulaFunctions2(S,T): Public == Private where + S: SetCategory + T: SetCategory + Public == Type with + map: (S -> T, PropositionalFormula S) -> PropositionalFormula T + ++ \spad{map(f,x)} returns a propositional formula where + ++ all atoms in \spad{x} have been replaced by the result + ++ of applying the function \spad{f} to them. + Private == add + macro FS == PropositionalFormula S + macro FT == PropositionalFormula T + map(f,x) == + x = true$FS => true$FT + x = false$FS => false$FT + (t := isAtom x) case S => f(t)::FT + (f1 := isNot x) case FS => not map(f,f1) + (f2 := isAnd x) case Pair(FS,FS) => + conjunction(map(f,first f2), map(f,second f2)) + (f2 := isOr x) case Pair(FS,FS) => + disjunction(map(f,first f2), map(f,second f2)) + (f2 := isImplies x) case Pair(FS,FS) => + implies(map(f,first f2), map(f,second f2)) + (f2 := isEquiv x) case Pair(FS,FS) => + equiv(map(f,first f2), map(f,second f2)) + error "invalid propositional formula" + +@ + + +\section{Kleene's Three-Valued Logic} +<<domain KTVLOGIC KleeneTrivalentLogic>>= +)abbrev domain KTVLOGIC KleeneTrivalentLogic +++ Author: Gabriel Dos Reis +++ Date Created: September 20, 2008 +++ Date Last Modified: January 14, 2012 +++ Description: +++ This domain implements Kleene's 3-valued propositional logic. +KleeneTrivalentLogic(): Public == Private where + Public == Join(PropositionalLogic,Finite) with + unknown: % ++ the indefinite `unknown' + case: (%,[| false |]) -> Boolean + ++ x case false holds if the value of `x' is `false' + case: (%,[| unknown |]) -> Boolean + ++ x case unknown holds if the value of `x' is `unknown' + case: (%,[| true |]) -> Boolean + ++ s case true holds if the value of `x' is `true'. + Private == Maybe Boolean add + false == per just(false@Boolean) + unknown == per nothing + true == per just(true@Boolean) + x = y == rep x = rep y + x case true == x = true@% + x case false == x = false@% + x case unknown == x = unknown + + not x == + x case false => true + x case unknown => unknown + false + + x and y == + x case false => false + x case unknown => + y case false => false + unknown + y + + x or y == + x case false => y + x case true => x + y case true => y + unknown + + implies(x,y) == + x case false => true + x case true => y + y case true => true + unknown + + equiv(x,y) == + x case unknown => x + x case true => y + not y + + coerce(x: %): OutputForm == + case rep x is + y@Boolean => y::OutputForm + otherwise => outputForm 'unknown + + size() == 3 + + index n == + n > 3 => error "index: argument out of bound" + n = 1 => false + n = 2 => unknown + true + + lookup x == + x = false => 1 + x = unknown => 2 + 3 +@ + +\section{License} + +<<license>>= +--Copyright (C) 1991-2002, The Numerical Algorithms Group Ltd. +--All rights reserved. +--Copyright (C) 2007-2013, Gabriel Dos Reis. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical Algorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ +<<*>>= +<<license>> + +<<category LOGIC Logic>> +<<category BOOLE BooleanLogic>> + +<<category PROPLOG PropositionalLogic>> +<<domain PROPFRML PropositionalFormula>> +<<package PROPFUN1 PropositionalFormulaFunctions1>> +<<package PROPFUN2 PropositionalFormulaFunctions2>> + +<<domain KTVLOGIC KleeneTrivalentLogic>> + +@ + + +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} + |