aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/integrat.spad.pamphlet
diff options
context:
space:
mode:
Diffstat (limited to 'src/algebra/integrat.spad.pamphlet')
-rw-r--r--src/algebra/integrat.spad.pamphlet12
1 files changed, 6 insertions, 6 deletions
diff --git a/src/algebra/integrat.spad.pamphlet b/src/algebra/integrat.spad.pamphlet
index 97eb0d2e..9fce6205 100644
--- a/src/algebra/integrat.spad.pamphlet
+++ b/src/algebra/integrat.spad.pamphlet
@@ -72,7 +72,7 @@ FunctionSpaceComplexIntegration(R, F): Exports == Implementation where
internalIntegrate(f, x) ==
f := distribute(f, x::F)
g : F
- any?(has?(operator #1, "rtrig"),
+ any?(has?(operator #1, 'rtrig),
[k for k in tower(g := realElementary(f, x))
| member?(x, variables(k::F))]$List(Kernel F))$List(Kernel F) =>
h := trigs2explogs(F2FG g, [K2KG k for k in tower f
@@ -110,8 +110,6 @@ FunctionSpaceIntegration(R, F): Exports == Implementation where
SE ==> Symbol
IR ==> IntegrationResult F
FG ==> Expression G
- ALGOP ==> "%alg"
- TANTEMP ==> "%temptan"::SE
Exports ==> with
integrate: (F, SE) -> Union(F, List F)
@@ -119,6 +117,8 @@ FunctionSpaceIntegration(R, F): Exports == Implementation where
++ where x is viewed as a real variable.
Implementation ==> add
+ macro ALGOP == '%alg
+ macro TANTEMP == '%temptan
import IntegrationTools(R, F)
import ElementaryIntegration(R, F)
import ElementaryIntegration(G, FG)
@@ -199,13 +199,13 @@ FunctionSpaceIntegration(R, F): Exports == Implementation where
f := distribute(f, x::F)
tf := [k for k in tower f | member?(x, variables(k::F)@List(SE))]$List(K)
ltf := select(is?(operator #1, "tan"::SE), tf)
- ht := any?(has?(operator #1, "htrig"), tf)
+ ht := any?(has?(operator #1, 'htrig), tf)
rec := rischNormalize(realElementary(f, x), x)
g := rootSimp(rec.func)
tg := [k for k in tower g | member?(x, variables(k::F))]$List(K)
ltg := select(is?(operator #1, "tan"::SE), tg)
- rtg := any?(has?(operator #1, "rtrig"), tg)
- el := any?(has?(operator #1, "elem"), tg)
+ rtg := any?(has?(operator #1, 'rtrig), tg)
+ el := any?(has?(operator #1, 'elem), tg)
i:IR
if (comp := goComplex?(rtg, tg, ltg)) then
i := map(FG2F, lfintegrate(trigs2explogs(F2FG g,