aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/ffhom.spad.pamphlet
diff options
context:
space:
mode:
Diffstat (limited to 'src/algebra/ffhom.spad.pamphlet')
-rw-r--r--src/algebra/ffhom.spad.pamphlet24
1 files changed, 12 insertions, 12 deletions
diff --git a/src/algebra/ffhom.spad.pamphlet b/src/algebra/ffhom.spad.pamphlet
index 6195d5b6..30e8302b 100644
--- a/src/algebra/ffhom.spad.pamphlet
+++ b/src/algebra/ffhom.spad.pamphlet
@@ -164,14 +164,14 @@ FiniteFieldHomomorphisms(F1,GF,F2): Exports == Implementation where
mat:=zero(degree1,degree1)$M
arr:=reducedQPowers(defPol1)$FFPOLY(GF)
for i in 1..degree1 repeat
- setColumn_!(mat,i,vectorise(arr.(i-1),degree1)$SUP(GF))$M
+ setColumn!(mat,i,vectorise(arr.(i-1),degree1)$SUP(GF))$M
-- old code
-- here one of the representation types must be "normal"
--a:=basis()$FFP(GF,defPol1).2 -- the root of the def. polynomial
- --setColumn_!(mat,1,coordinates(a)$FFP(GF,defPol1))$M
+ --setColumn!(mat,1,coordinates(a)$FFP(GF,defPol1))$M
--for i in 2..degree1 repeat
-- a:= a **$FFP(GF,defPol1) size()$GF
- -- setColumn_!(mat,i,coordinates(a)$FFP(GF,defPol1))$M
+ -- setColumn!(mat,i,coordinates(a)$FFP(GF,defPol1))$M
--for the direction "normal" -> "polynomial" we have to multiply the
-- coordinate vector of an element of the normal basis field with
-- the matrix 'mat'. In this case 'mat' is the correct conversion
@@ -220,10 +220,10 @@ FiniteFieldHomomorphisms(F1,GF,F2): Exports == Implementation where
root:=rootOfIrreduciblePoly(dPsmall)$FFPOL2(FFP(GF,dPbig),GF)
-- set up matrix for polynomial conversion
matsb:=zero(degbig,degsmall)$M
- qsetelt_!(matsb,1,1,1$GF)$M
+ qsetelt!(matsb,1,1,1$GF)$M
a:=root
for i in 2..degsmall repeat
- setColumn_!(matsb,i,coordinates(a)$FFP(GF,dPbig))$M
+ setColumn!(matsb,i,coordinates(a)$FFP(GF,dPbig))$M
a := a *$FFP(GF,dPbig) root
-- the conversion from 'big' to 'small': we can't invert matsb
-- directly, because it has degbig rows and degsmall columns and
@@ -245,7 +245,7 @@ FiniteFieldHomomorphisms(F1,GF,F2): Exports == Implementation where
mat:=inverse(mat)$M :: M
matbs:=zero(degsmall,degbig)$M
for i in 1..degsmall repeat
- setColumn_!(matbs,iVec.i,column(mat,i)$M)$M
+ setColumn!(matbs,iVec.i,column(mat,i)$M)$M
-- print(matsb::OUT)
-- print(matbs::OUT)
-- 4) if the 'bigger' field is "normal" we have to compose the
@@ -261,13 +261,13 @@ FiniteFieldHomomorphisms(F1,GF,F2): Exports == Implementation where
arr:=reducedQPowers(dPbig)$FFPOLY(GF)
mat:=zero(degbig,degbig)$M
for i in 1..degbig repeat
- setColumn_!(mat,i,vectorise(arr.(i-1),degbig)$SUP(GF))$M
+ setColumn!(mat,i,vectorise(arr.(i-1),degbig)$SUP(GF))$M
-- old code
--a:=basis()$FFP(GF,dPbig).2 -- the root of the def.Polynomial
- --setColumn_!(mat,1,coordinates(a)$FFP(GF,dPbig))$M
+ --setColumn!(mat,1,coordinates(a)$FFP(GF,dPbig))$M
--for i in 2..degbig repeat
-- a:= a **$FFP(GF,dPbig) size()$GF
- -- setColumn_!(mat,i,coordinates(a)$FFP(GF,dPbig))$M
+ -- setColumn!(mat,i,coordinates(a)$FFP(GF,dPbig))$M
-- print(inverse(mat)$M::OUT)
matsb:= (inverse(mat)$M :: M) * matsb
-- print("inv *.."::OUT)
@@ -284,13 +284,13 @@ FiniteFieldHomomorphisms(F1,GF,F2): Exports == Implementation where
arr:=reducedQPowers(dPsmall)$FFPOLY(GF)
mat:=zero(degsmall,degsmall)$M
for i in 1..degsmall repeat
- setColumn_!(mat,i,vectorise(arr.(i-1),degsmall)$SUP(GF))$M
+ setColumn!(mat,i,vectorise(arr.(i-1),degsmall)$SUP(GF))$M
-- old code
--b:FFP(GF,dPsmall):=basis()$FFP(GF,dPsmall).2
- --setColumn_!(mat,1,coordinates(b)$FFP(GF,dPsmall))$M
+ --setColumn!(mat,1,coordinates(b)$FFP(GF,dPsmall))$M
--for i in 2..degsmall repeat
-- b:= b **$FFP(GF,dPsmall) size()$GF
- -- setColumn_!(mat,i,coordinates(b)$FFP(GF,dPsmall))$M
+ -- setColumn!(mat,i,coordinates(b)$FFP(GF,dPsmall))$M
-- print(mat::OUT)
matsb:= matsb * mat
matbs:= (inverse(mat) :: M) * matbs