diff options
Diffstat (limited to 'src/algebra/divisor.spad.pamphlet')
-rw-r--r-- | src/algebra/divisor.spad.pamphlet | 15 |
1 files changed, 5 insertions, 10 deletions
diff --git a/src/algebra/divisor.spad.pamphlet b/src/algebra/divisor.spad.pamphlet index adc98c0f..c0fbbc1f 100644 --- a/src/algebra/divisor.spad.pamphlet +++ b/src/algebra/divisor.spad.pamphlet @@ -156,8 +156,7 @@ FractionalIdeal(R, F, UP, A): Exports == Implementation where coerce(i:$):OutputForm == nm := num2O numer i --- one? denom i => nm - (denom i = 1) => nm + one? denom i => nm (1::Integer::OutputForm) / (denom(i)::OutputForm) * nm if F has Finite then @@ -170,8 +169,7 @@ FractionalIdeal(R, F, UP, A): Exports == Implementation where minimize i == n := (#(nm := numer i)) --- one?(n) or (n < 3 and ret? nm) => i - (n = 1) or (n < 3 and ret? nm) => i + one?(n) or (n < 3 and ret? nm) => i nrm := retract(norm mkIdeal(nm, 1))@R for range in 1..5 repeat (u := tryRange(range, nm, nrm, i)) case $ => return(u::$) @@ -676,8 +674,7 @@ HyperellipticFiniteDivisor(F, UP, UPUP, R): Exports == Implementation where 0 == divisor(1$R) divisor(g:R) == [1, 0, g, true] makeDivisor(a, b, g) == [a, b, g, false] --- princ? d == one?(d.center) and zero?(d.polyPart) - princ? d == (d.center = 1) and zero?(d.polyPart) + princ? d == one?(d.center) and zero?(d.polyPart) ideal d == ideal([d.principalPart]) * mkIdeal(d.center, d.polyPart) decompose d == [ideal makeDivisor(d.center, d.polyPart, 1), d.principalPart] mkIdeal(a, b) == ideal [a::RF::R, reduce(monomial(1, 1)$UPUP - b::RF::UPUP)] @@ -705,8 +702,7 @@ HyperellipticFiniteDivisor(F, UP, UPUP, R): Exports == Implementation where divisor(d.principalPart ** n) + divisor(mkIdeal(d.center,d.polyPart) ** n) divisor(i:ID) == --- one?(n := #(v := basis minimize i)) => divisor v minIndex v - (n := #(v := basis minimize i)) = 1 => divisor v minIndex v + one?(n := #(v := basis minimize i)) => divisor v minIndex v n ~= 2 => ERR a := v minIndex v h := v maxIndex v @@ -733,8 +729,7 @@ HyperellipticFiniteDivisor(F, UP, UPUP, R): Exports == Implementation where coerce(d:%):O == r := bracket [d.center::O, d.polyPart::O] g := prefix(dvd, [d.principalPart::O]) --- z := one?(d.principalPart) - z := (d.principalPart = 1) + z := one?(d.principalPart) princ? d => (z => zer; g) z => r r + g |