diff options
Diffstat (limited to 'src/algebra/coordsys.spad.pamphlet')
-rw-r--r-- | src/algebra/coordsys.spad.pamphlet | 240 |
1 files changed, 240 insertions, 0 deletions
diff --git a/src/algebra/coordsys.spad.pamphlet b/src/algebra/coordsys.spad.pamphlet new file mode 100644 index 00000000..1dc91964 --- /dev/null +++ b/src/algebra/coordsys.spad.pamphlet @@ -0,0 +1,240 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/algebra coordsys.spad} +\author{Jim Wen, Clifton J. Williamson} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{package COORDSYS CoordinateSystems} +<<package COORDSYS CoordinateSystems>>= +)abbrev package COORDSYS CoordinateSystems +++ Author: Jim Wen +++ Date Created: 12 March 1990 +++ Date Last Updated: 19 June 1990, Clifton J. Williamson +++ Basic Operations: cartesian, polar, cylindrical, spherical, parabolic, elliptic, +++ parabolicCylindrical, paraboloidal, ellipticCylindrical, prolateSpheroidal, +++ oblateSpheroidal, bipolar, bipolarCylindrical, toroidal, conical +++ Related Constructors: +++ Also See: +++ AMS Classifications: +++ Keywords: +++ References: +++ Description: CoordinateSystems provides coordinate transformation functions +++ for plotting. Functions in this package return conversion functions +++ which take points expressed in other coordinate systems and return points +++ with the corresponding Cartesian coordinates. + +CoordinateSystems(R): Exports == Implementation where + + R : Join(Field,TranscendentalFunctionCategory,RadicalCategory) + Pt ==> Point R + + Exports ==> with + cartesian : Pt -> Pt + ++ cartesian(pt) returns the Cartesian coordinates of point pt. + polar: Pt -> Pt + ++ polar(pt) transforms pt from polar coordinates to Cartesian + ++ coordinates: the function produced will map the point \spad{(r,theta)} + ++ to \spad{x = r * cos(theta)} , \spad{y = r * sin(theta)}. + cylindrical: Pt -> Pt + ++ cylindrical(pt) transforms pt from polar coordinates to Cartesian + ++ coordinates: the function produced will map the point \spad{(r,theta,z)} + ++ to \spad{x = r * cos(theta)}, \spad{y = r * sin(theta)}, \spad{z}. + spherical: Pt -> Pt + ++ spherical(pt) transforms pt from spherical coordinates to Cartesian + ++ coordinates: the function produced will map the point \spad{(r,theta,phi)} + ++ to \spad{x = r*sin(phi)*cos(theta)}, \spad{y = r*sin(phi)*sin(theta)}, + ++ \spad{z = r*cos(phi)}. + parabolic: Pt -> Pt + ++ parabolic(pt) transforms pt from parabolic coordinates to Cartesian + ++ coordinates: the function produced will map the point \spad{(u,v)} to + ++ \spad{x = 1/2*(u**2 - v**2)}, \spad{y = u*v}. + parabolicCylindrical: Pt -> Pt + ++ parabolicCylindrical(pt) transforms pt from parabolic cylindrical + ++ coordinates to Cartesian coordinates: the function produced will + ++ map the point \spad{(u,v,z)} to \spad{x = 1/2*(u**2 - v**2)}, + ++ \spad{y = u*v}, \spad{z}. + paraboloidal: Pt -> Pt + ++ paraboloidal(pt) transforms pt from paraboloidal coordinates to + ++ Cartesian coordinates: the function produced will map the point + ++ \spad{(u,v,phi)} to \spad{x = u*v*cos(phi)}, \spad{y = u*v*sin(phi)}, + ++ \spad{z = 1/2 * (u**2 - v**2)}. + elliptic: R -> (Pt -> Pt) + ++ elliptic(a) transforms from elliptic coordinates to Cartesian + ++ coordinates: \spad{elliptic(a)} is a function which will map the + ++ point \spad{(u,v)} to \spad{x = a*cosh(u)*cos(v)}, \spad{y = a*sinh(u)*sin(v)}. + ellipticCylindrical: R -> (Pt -> Pt) + ++ ellipticCylindrical(a) transforms from elliptic cylindrical coordinates + ++ to Cartesian coordinates: \spad{ellipticCylindrical(a)} is a function + ++ which will map the point \spad{(u,v,z)} to \spad{x = a*cosh(u)*cos(v)}, + ++ \spad{y = a*sinh(u)*sin(v)}, \spad{z}. + prolateSpheroidal: R -> (Pt -> Pt) + ++ prolateSpheroidal(a) transforms from prolate spheroidal coordinates to + ++ Cartesian coordinates: \spad{prolateSpheroidal(a)} is a function + ++ which will map the point \spad{(xi,eta,phi)} to + ++ \spad{x = a*sinh(xi)*sin(eta)*cos(phi)}, \spad{y = a*sinh(xi)*sin(eta)*sin(phi)}, + ++ \spad{z = a*cosh(xi)*cos(eta)}. + oblateSpheroidal: R -> (Pt -> Pt) + ++ oblateSpheroidal(a) transforms from oblate spheroidal coordinates to + ++ Cartesian coordinates: \spad{oblateSpheroidal(a)} is a function which + ++ will map the point \spad{(xi,eta,phi)} to \spad{x = a*sinh(xi)*sin(eta)*cos(phi)}, + ++ \spad{y = a*sinh(xi)*sin(eta)*sin(phi)}, \spad{z = a*cosh(xi)*cos(eta)}. + bipolar: R -> (Pt -> Pt) + ++ bipolar(a) transforms from bipolar coordinates to Cartesian coordinates: + ++ \spad{bipolar(a)} is a function which will map the point \spad{(u,v)} to + ++ \spad{x = a*sinh(v)/(cosh(v)-cos(u))}, \spad{y = a*sin(u)/(cosh(v)-cos(u))}. + bipolarCylindrical: R -> (Pt -> Pt) + ++ bipolarCylindrical(a) transforms from bipolar cylindrical coordinates + ++ to Cartesian coordinates: \spad{bipolarCylindrical(a)} is a function which + ++ will map the point \spad{(u,v,z)} to \spad{x = a*sinh(v)/(cosh(v)-cos(u))}, + ++ \spad{y = a*sin(u)/(cosh(v)-cos(u))}, \spad{z}. + toroidal: R -> (Pt -> Pt) + ++ toroidal(a) transforms from toroidal coordinates to Cartesian + ++ coordinates: \spad{toroidal(a)} is a function which will map the point + ++ \spad{(u,v,phi)} to \spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))}, + ++ \spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))}, \spad{z = a*sin(u)/(cosh(v)-cos(u))}. + conical: (R,R) -> (Pt -> Pt) + ++ conical(a,b) transforms from conical coordinates to Cartesian coordinates: + ++ \spad{conical(a,b)} is a function which will map the point \spad{(lambda,mu,nu)} to + ++ \spad{x = lambda*mu*nu/(a*b)}, + ++ \spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))}, + ++ \spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}. + + Implementation ==> add + + cartesian pt == + -- we just want to interpret the cartesian coordinates + -- from the first N elements of the point - so the + -- identity function will do + pt + + polar pt0 == + pt := copy pt0 + r := elt(pt0,1); theta := elt(pt0,2) + pt.1 := r * cos(theta); pt.2 := r * sin(theta) + pt + + cylindrical pt0 == polar pt0 + -- apply polar transformation to first 2 coordinates + + spherical pt0 == + pt := copy pt0 + r := elt(pt0,1); theta := elt(pt0,2); phi := elt(pt0,3) + pt.1 := r * sin(phi) * cos(theta); pt.2 := r * sin(phi) * sin(theta) + pt.3 := r * cos(phi) + pt + + parabolic pt0 == + pt := copy pt0 + u := elt(pt0,1); v := elt(pt0,2) + pt.1 := (u*u - v*v)/(2::R) ; pt.2 := u*v + pt + + parabolicCylindrical pt0 == parabolic pt0 + -- apply parabolic transformation to first 2 coordinates + + paraboloidal pt0 == + pt := copy pt0 + u := elt(pt0,1); v := elt(pt0,2); phi := elt(pt0,3) + pt.1 := u*v*cos(phi); pt.2 := u*v*sin(phi); pt.3 := (u*u - v*v)/(2::R) + pt + + elliptic a == + pt := copy(#1) + u := elt(#1,1); v := elt(#1,2) + pt.1 := a*cosh(u)*cos(v); pt.2 := a*sinh(u)*sin(v) + pt + + ellipticCylindrical a == elliptic a + -- apply elliptic transformation to first 2 coordinates + + prolateSpheroidal a == + pt := copy(#1) + xi := elt(#1,1); eta := elt(#1,2); phi := elt(#1,3) + pt.1 := a*sinh(xi)*sin(eta)*cos(phi) + pt.2 := a*sinh(xi)*sin(eta)*sin(phi) + pt.3 := a*cosh(xi)*cos(eta) + pt + + oblateSpheroidal a == + pt := copy(#1) + xi := elt(#1,1); eta := elt(#1,2); phi := elt(#1,3) + pt.1 := a*sinh(xi)*sin(eta)*cos(phi) + pt.2 := a*cosh(xi)*cos(eta)*sin(phi) + pt.3 := a*sinh(xi)*sin(eta) + pt + + bipolar a == + pt := copy(#1) + u := elt(#1,1); v := elt(#1,2) + pt.1 := a*sinh(v)/(cosh(v)-cos(u)) + pt.2 := a*sin(u)/(cosh(v)-cos(u)) + pt + + bipolarCylindrical a == bipolar a + -- apply bipolar transformation to first 2 coordinates + + toroidal a == + pt := copy(#1) + u := elt(#1,1); v := elt(#1,2); phi := elt(#1,3) + pt.1 := a*sinh(v)*cos(phi)/(cosh(v)-cos(u)) + pt.2 := a*sinh(v)*sin(phi)/(cosh(v)-cos(u)) + pt.3 := a*sin(u)/(cosh(v)-cos(u)) + pt + + conical(a,b) == + pt := copy(#1) + lambda := elt(#1,1); mu := elt(#1,2); nu := elt(#1,3) + pt.1 := lambda*mu*nu/(a*b) + pt.2 := lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2)) + pt.3 := lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2)) + pt + +@ +\section{License} +<<license>>= +--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ +<<*>>= +<<license>> + +<<package COORDSYS CoordinateSystems>> +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |