diff options
Diffstat (limited to 'src/algebra/clifford.spad.pamphlet')
-rw-r--r-- | src/algebra/clifford.spad.pamphlet | 533 |
1 files changed, 533 insertions, 0 deletions
diff --git a/src/algebra/clifford.spad.pamphlet b/src/algebra/clifford.spad.pamphlet new file mode 100644 index 00000000..eeec3b36 --- /dev/null +++ b/src/algebra/clifford.spad.pamphlet @@ -0,0 +1,533 @@ +\documentclass{article} +\usepackage{axiom} +\usepackage{amssymb} +\input{diagrams.tex} +\begin{document} +\title{\$SPAD/src/algebra clifford.spad} +\author{Stephen M. Watt} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{domain QFORM QuadraticForm} +<<domain QFORM QuadraticForm>>= +)abbrev domain QFORM QuadraticForm +++ Author: Stephen M. Watt +++ Date Created: August 1988 +++ Date Last Updated: May 17, 1991 +++ Basic Operations: quadraticForm, elt +++ Related Domains: Matrix, SquareMatrix +++ Also See: +++ AMS Classifications: +++ Keywords: quadratic form +++ Examples: +++ References: +++ +++ Description: +++ This domain provides modest support for quadratic forms. +QuadraticForm(n, K): T == Impl where + n: PositiveInteger + K: Field + SM ==> SquareMatrix + V ==> DirectProduct + + T ==> AbelianGroup with + quadraticForm: SM(n, K) -> % + ++ quadraticForm(m) creates a quadratic form from a symmetric, + ++ square matrix m. + matrix: % -> SM(n, K) + ++ matrix(qf) creates a square matrix from the quadratic form qf. + elt: (%, V(n, K)) -> K + ++ elt(qf,v) evaluates the quadratic form qf on the vector v, + ++ producing a scalar. + + Impl ==> SM(n,K) add + Rep := SM(n,K) + + quadraticForm m == + not symmetric? m => + error "quadraticForm requires a symmetric matrix" + m::% + matrix q == q pretend SM(n,K) + elt(q,v) == dot(v, (matrix q * v)) + +@ +\section{domain CLIF CliffordAlgebra\cite{7,12}} +\subsection{Vector (linear) spaces} +This information is originally from Paul Leopardi's presentation on +the {\sl Introduction to Clifford Algebras} and is included here as +an outline with his permission. Further details are based on the book +by Doran and Lasenby called {\sl Geometric Algebra for Physicists}. + +Consider the various kinds of products that can occur between vectors. +There are scalar and vector products from 3D geometry. There are the +complex and quaterion products. There is also +the {\sl outer} or {\sl exterior} product. + +Vector addition commutes: +\[a + b = b + a\] +Vector addtion is associative: +\[a + (b + c) = (a + b) + c\] +The identity vector exists: +\[a + 0 = a\] +Every vector has an inverse: +\[a + (-a) = 0\] + +If we consider vectors to be directed line segments, thus establishing +a geometric meaning for a vector, then each of these properties has a +geometric meaning. + +A multiplication operator exists between scalars and vectors with +the properties: +\[\lambda(a + b) = \lambda a + \lambda b\] +\[(\lambda + \mu)a = \lambda a + \mu a\] +\[(\lambda\mu)a = \lambda(\mu a)\] +\[{\rm If\ }1\lambda = \lambda{\rm\ for\ all\ scalars\ }\lambda +{\rm\ then\ }1a=a{\rm\ for\ all\ vectors\ }a\] + +These properties completely define a vector (linear) space. The +$+$ operation for scalar arithmetic is not the same as the $+$ +operation for vectors. + +{\bf Definition: Isomorphic} The vector space $A$ is isomorphic to +the vector space $B$ if their exists a one-to-one correspondence +between their elements which preserves sums and there is a one-to-one +correspondence between the scalars which preserves sums and products. + +{\bf Definition: Subspace} Vector space $B$ is a subspace of vector +space $A$ if all of the elements of $B$ are contained in $A$ and +they share the same scalars. + +{\bf Definition: Linear Combination} Given vectors $a_1,\ldots,a_n$ +the vector $b$ is a linear combination of the vectors if we can find +scalars $\lambda_i$ such that +\[b = \lambda_1 a_1+\ldots+\lambda_n a_n = \sum_{k=1}^n \lambda_i a_i\] + +{\bf Definition: Linearly Independent} If there exists scalars $\lambda_i$ +such that +\[\lambda_1 a_1 + \ldots + \lambda_n a_n = 0\] +and at least one of the $\lambda_i$ is not zero +then the vectors $a_1,\ldots,a_n$ are linearly dependent. If no such +scalars exist then the vectors are linearly independent. + +{\bf Definition: Span} If every vector can be written as a linear +combination of a fixed set of vectors $a_1,\ldots,a_n$ then this set +of vectors is said to span the vector space. + +{\bf Definition: Basis} If a set of vectors $a_1,\ldots,a_n$ is linearly +independent and spans a vector space $A$ then the vectors form a basis +for $A$. + +{\bf Definition: Dimension} The dimension of a vector space is the +number of basis elements, which is unique since all bases of a +vector space have the same number of elements. +\subsection{Quadratic Forms\cite{1}} +For vector space $\mathbb{V}$ over field $\mathbb{F}$, characteristic +$\ne 2$: +\begin{list}{} +\item Map $f:\mathbb{V} \rightarrow \mathbb{F}$, with +$$f(\lambda x)=\lambda^2f(x),\forall \lambda \in \mathbb{F}, x \in \mathbb{V}$$ +\item $f(x) = b(x,x)$, where +$$b:\mathbb{V}{\rm\ x\ }\mathbb{V} \rightarrow \mathbb{F}{\rm\ ,given\ by\ }$$ +$$b(x,y):=\frac{1}{2}(f(x+y)-f(x)=f(y))$$ +is a symmetric bilinear form +\end{list} +\subsection{Quadratic spaces, Clifford Maps\cite{1,2}} +\begin{list}{} +\item A quadratic space is the pair($\mathbb{V}$,$f$), where $f$ is a +quadratic form on $\mathbb{V}$ +\item A Clifford map is a vector space homomorphism +$$\rho : \mathbb{V} \rightarrow \mathbb{A}$$ +where $\mathbb{A}$ is an associated algebra, and +$$(\rho v)^2 = f(v),{\rm\ \ \ } \forall v \in \mathbb{V}$$ +\end{list} +\subsection{Universal Clifford algebras\cite{1}} +\begin{list}{} +\item The {\sl universal Clifford algebra} $Cl(f)$ for the quadratic space +$(\mathbb{V},f)$ is the algebra generated by the image of the Clifford +map $\phi_f$ such that $Cl(f)$ is the universal initial object such +that $\forall$ suitable algebra $\mathbb{A}$ with Clifford map +$\phi_{\mathbb{A}} \exists$ a homomorphism +$$P_\mathbb{A}:Cl(f) \rightarrow \mathbb{A}$$ +$$\rho_\mathbb{A} = P_\mathbb{A}\circ\rho_f$$ +\end{list} +\subsection{Real Clifford algebras $\mathbb{R}_{p,q}$\cite{2}} +\begin{list}{} +\item The real quadratic space $\mathbb{R}^{p,q}$ is $\mathbb{R}^{p+q}$ with +$$\phi(x):=-\sum_{k:=-q}^{-1}{x_k^2}+\sum_{k=1}^p{x_k^2}$$ +\item For each $p,q \in \mathbb{N}$, the real universal Clifford algebra +for $\mathbb{R}^{p,q}$ is called $\mathbb{R}_{p,q}$ +\item $\mathbb{R}_{p,q}$ is isomorphic to some matrix algebra over one of: +$\mathbb{R}$,$\mathbb{R}\oplus\mathbb{R}$,$\mathbb{C}$, +$\mathbb{H}$,$\mathbb{H}\oplus\mathbb{H}$ +\item For example, $\mathbb{R}_{1,1} \cong \mathbb{R}(2)$ +\end{list} +\subsection{Notation for integer sets} +\begin{list}{} +\item For $S \subseteq \mathbb{Z}$, define +$$\sum_{k \in S}{f_k}:=\sum_{k={\rm min\ }S, k \in S}^{{\rm max\ } S}{f_k}$$ +$$\prod_{k \in S}{f_k}:=\prod_{k={\rm min\ }S, k \in S}^{{\rm max\ } S}{f_k}$$ +$$\mathbb{P}(S):={\rm\ the\ }\ power\ set\ {\rm\ of\ }S$$ +\item For $m \le n \in \mathbb{Z}$, define +$$\zeta(m,n):=\{m,m+1,\ldots,n-1,n\}\backslash\{0\}$$ +\end{list} +\subsection{Frames for Clifford algebras\cite{9,10,11}} +\begin{list}{} +\item A {\sl frame} is an ordered basis $(\gamma_{-q},\ldots,\gamma_p)$ +for $\mathbb{R}^{p,q}$ which puts a quadratic form into the canonical +form $\phi$ +\item For $p,q \in \mathbb{N}$, embed the frame for $\mathbb{R}^{p,q}$ +into $\mathbb{R}_{p,q}$ via the maps +$$\gamma:\zeta(-q,p) \rightarrow \mathbb{R}^{p,q}$$ +$$\rho:\mathbb{R}^{p,q} \rightarrow \mathbb{R}_{p,q}$$ +$$(\rho\gamma k)^2 = \phi\gamma k = {\rm\ sgn\ }k$$ +\end{list} +\subsection{Real frame groups\cite{5,6}} +\begin{list}{} +\item For $p,q \in \mathbb{N}$, define the real {\sl frame group} $\mathbb{G}_{p,q}$ +via the map +$$g:\zeta(-q,p) \rightarrow \mathbb{G}_{p,q}$$ +with generators and relations +$$\langle \mu,g_k | \mu g_k = g_k \mu,{\rm\ \ \ }\mu^2 = 1,$$ +$$(g_k)^2 = +\left\{ +\begin{array}{lcc} +\mu,&{\rm\ \ }&{\rm\ if\ }k < 0\\ +1&{\rm\ \ }&{\rm\ if\ }k > 0 +\end{array} +\right.$$ +$$g_kg_m = \mu g_mg_k{\rm\ \ \ }\forall k \ne m\rangle$$ +\end{list} +\subsection{Canonical products\cite{1,3,4}} +\begin{list}{} +\item The real frame group $\mathbb{G}_{p,q}$ has order $2^{p+q+1}$ +\item Each member $w$ can be expressed as the canonically ordered product +$$w=\mu^a\prod_{k \in T}{g_k}$$ +$$\ =\mu^a\prod_{k=-q,k\ne0}^p{g_k^{b_k}}$$ +where $T \subseteq \zeta(-q,p),a,b_k \in \{0,1\}$ +\end{list} +\subsection{Clifford algebra of frame group\cite{1,4,5,6}} +\begin{list}{} +\item For $p,q \in \mathbb{N}$ embed $\mathbb{G}_{p,q}$ into +$\mathbb{R}_{p,q}$ via the map +$$\alpha \mathbb{G}_{p,q} \rightarrow \mathbb{R}_{p,q}$$ +$$\alpha 1 := 1,{\rm\ \ \ \ \ } \alpha\mu := -1$$ +$$\alpha g_k := \rho\gamma_k, {\rm \ \ \ \ \ } +\alpha(gh) := (\alpha g)(\alpha h)$$ +\item Define {\sl basis elements} via the map +$$e:\mathbb{P}\zeta(-q,p) \rightarrow \mathbb{R}_{p,q}, +{\rm \ \ \ \ \ }e_T := \alpha \prod_{k \in T}{g_k}$$ +\item Each $a \in \mathbb{R}_{p,q}$ can be expressed as +$$a = \sum_{T \subseteq \zeta(-q,p)}{a_T e_T}$$ +\end{list} +\subsection{Neutral matrix representations\cite{1,2,8}} +The {\sl representation map} $P_m$ and {\sl representation matrix} $R_m$ +make the following diagram commute: +\begin{diagram} +\mathbb{R}_{m,m} & \rTo^{coord} & \mathbb{R}^{4^m}\\ +\dTo^{P_m} & & \dTo_{R_m}\\ +\mathbb{R}(2^m) & \rTo_{reshape} & \mathbb{R}^{4^m}\\ +\end{diagram} +<<domain CLIF CliffordAlgebra>>= +)abbrev domain CLIF CliffordAlgebra +++ Author: Stephen M. Watt +++ Date Created: August 1988 +++ Date Last Updated: May 17, 1991 +++ Basic Operations: wholeRadix, fractRadix, wholeRagits, fractRagits +++ Related Domains: QuadraticForm, Quaternion, Complex +++ Also See: +++ AMS Classifications: +++ Keywords: clifford algebra, grassman algebra, spin algebra +++ Examples: +++ References: +++ +++ Description: +++ CliffordAlgebra(n, K, Q) defines a vector space of dimension \spad{2**n} +++ over K, given a quadratic form Q on \spad{K**n}. +++ +++ If \spad{e[i]}, \spad{1<=i<=n} is a basis for \spad{K**n} then +++ 1, \spad{e[i]} (\spad{1<=i<=n}), \spad{e[i1]*e[i2]} +++ (\spad{1<=i1<i2<=n}),...,\spad{e[1]*e[2]*..*e[n]} +++ is a basis for the Clifford Algebra. +++ +++ The algebra is defined by the relations +++ \spad{e[i]*e[j] = -e[j]*e[i]} (\spad{i \~~= j}), +++ \spad{e[i]*e[i] = Q(e[i])} +++ +++ Examples of Clifford Algebras are: gaussians, quaternions, exterior +++ algebras and spin algebras. + +CliffordAlgebra(n, K, Q): T == Impl where + n: PositiveInteger + K: Field + Q: QuadraticForm(n, K) + + PI ==> PositiveInteger + NNI==> NonNegativeInteger + + T ==> Join(Ring, Algebra(K), VectorSpace(K)) with + e: PI -> % + ++ e(n) produces the appropriate unit element. + monomial: (K, List PI) -> % + ++ monomial(c,[i1,i2,...,iN]) produces the value given by + ++ \spad{c*e(i1)*e(i2)*...*e(iN)}. + coefficient: (%, List PI) -> K + ++ coefficient(x,[i1,i2,...,iN]) extracts the coefficient of + ++ \spad{e(i1)*e(i2)*...*e(iN)} in x. + recip: % -> Union(%, "failed") + ++ recip(x) computes the multiplicative inverse of x or "failed" + ++ if x is not invertible. + + Impl ==> add + Qeelist := [Q unitVector(i::PositiveInteger) for i in 1..n] + dim := 2**n + + Rep := PrimitiveArray K + + New ==> new(dim, 0$K)$Rep + + x, y, z: % + c: K + m: Integer + + characteristic() == characteristic()$K + dimension() == dim::CardinalNumber + + x = y == + for i in 0..dim-1 repeat + if x.i ^= y.i then return false + true + + x + y == (z := New; for i in 0..dim-1 repeat z.i := x.i + y.i; z) + x - y == (z := New; for i in 0..dim-1 repeat z.i := x.i - y.i; z) + - x == (z := New; for i in 0..dim-1 repeat z.i := - x.i; z) + m * x == (z := New; for i in 0..dim-1 repeat z.i := m*x.i; z) + c * x == (z := New; for i in 0..dim-1 repeat z.i := c*x.i; z) + + 0 == New + 1 == (z := New; z.0 := 1; z) + coerce(m): % == (z := New; z.0 := m::K; z) + coerce(c): % == (z := New; z.0 := c; z) + + e b == + b::NNI > n => error "No such basis element" + iz := 2**((b-1)::NNI) + z := New; z.iz := 1; z + + -- The ei*ej products could instead be precomputed in + -- a (2**n)**2 multiplication table. + addMonomProd(c1: K, b1: NNI, c2: K, b2: NNI, z: %): % == + c := c1 * c2 + bz := b2 + for i in 0..n-1 | bit?(b1,i) repeat + -- Apply rule ei*ej = -ej*ei for i^=j + k := 0 + for j in i+1..n-1 | bit?(b1, j) repeat k := k+1 + for j in 0..i-1 | bit?(bz, j) repeat k := k+1 + if odd? k then c := -c + -- Apply rule ei**2 = Q(ei) + if bit?(bz,i) then + c := c * Qeelist.(i+1) + bz:= (bz - 2**i)::NNI + else + bz:= bz + 2**i + z.bz := z.bz + c + z + + x * y == + z := New + for ix in 0..dim-1 repeat + if x.ix ^= 0 then for iy in 0..dim-1 repeat + if y.iy ^= 0 then addMonomProd(x.ix,ix,y.iy,iy,z) + z + + canonMonom(c: K, lb: List PI): Record(coef: K, basel: NNI) == + -- 0. Check input + for b in lb repeat b > n => error "No such basis element" + + -- 1. Apply identity ei*ej = -ej*ei, i^=j. + -- The Rep assumes n is small so bubble sort is ok. + -- Using bubble sort keeps the exchange info obvious. + wasordered := false + exchanges := 0 + while not wasordered repeat + wasordered := true + for i in 1..#lb-1 repeat + if lb.i > lb.(i+1) then + t := lb.i; lb.i := lb.(i+1); lb.(i+1) := t + exchanges := exchanges + 1 + wasordered := false + if odd? exchanges then c := -c + + -- 2. Prepare the basis element + -- Apply identity ei*ei = Q(ei). + bz := 0 + for b in lb repeat + bn := (b-1)::NNI + if bit?(bz, bn) then + c := c * Qeelist bn + bz:= ( bz - 2**bn )::NNI + else + bz:= bz + 2**bn + [c, bz::NNI] + + monomial(c, lb) == + r := canonMonom(c, lb) + z := New + z r.basel := r.coef + z + coefficient(z, lb) == + r := canonMonom(1, lb) + r.coef = 0 => error "Cannot take coef of 0" + z r.basel/r.coef + + Ex ==> OutputForm + + coerceMonom(c: K, b: NNI): Ex == + b = 0 => c::Ex + ml := [sub("e"::Ex, i::Ex) for i in 1..n | bit?(b,i-1)] + be := reduce("*", ml) + c = 1 => be + c::Ex * be + coerce(x): Ex == + tl := [coerceMonom(x.i,i) for i in 0..dim-1 | x.i^=0] + null tl => "0"::Ex + reduce("+", tl) + + + localPowerSets(j:NNI): List(List(PI)) == + l: List List PI := list [] + j = 0 => l + Sm := localPowerSets((j-1)::NNI) + Sn: List List PI := [] + for x in Sm repeat Sn := cons(cons(j pretend PI, x),Sn) + append(Sn, Sm) + + powerSets(j:NNI):List List PI == map(reverse, localPowerSets j) + + Pn:List List PI := powerSets(n) + + recip(x: %): Union(%, "failed") == + one:% := 1 + -- tmp:c := x*yC - 1$C + rhsEqs : List K := [] + lhsEqs: List List K := [] + lhsEqi: List K + for pi in Pn repeat + rhsEqs := cons(coefficient(one, pi), rhsEqs) + + lhsEqi := [] + for pj in Pn repeat + lhsEqi := cons(coefficient(x*monomial(1,pj),pi),lhsEqi) + lhsEqs := cons(reverse(lhsEqi),lhsEqs) + ans := particularSolution(matrix(lhsEqs), + vector(rhsEqs))$LinearSystemMatrixPackage(K, Vector K, Vector K, Matrix K) + ans case "failed" => "failed" + ansP := parts(ans) + ansC:% := 0 + for pj in Pn repeat + cj:= first ansP + ansP := rest ansP + ansC := ansC + cj*monomial(1,pj) + ansC + +@ +\section{License} +<<license>>= +--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ +<<*>>= +<<license>> + +<<domain QFORM QuadraticForm>> +<<domain CLIF CliffordAlgebra>> +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} Lounesto, P. +"Clifford algebras and spinors", +2nd edition, Cambridge University Press (2001) +\bibitem{2} Porteous, I., +"Clifford algebras and the classical groups", +Cambridge University Press (1995) +Van Nostrand Reinhold, (1969) +\bibitem{3} Bergdolt, G. +"Orthonormal basis sets in Clifford algebras", +in \cite{16} (1996) +\bibitem{4} Dorst, Leo, +"Honing geometric algebra for its use in the computer sciences", +pp127-152 from \cite{15} (2001) +\bibitem{5} Braden, H.W., +"N-dimensional spinors: Their properties in terms of finite groups", +American Institute of Physics, +J. Math. Phys. 26(4), April 1985 +\bibitem{6} Lam, T.Y. and Smith, Tara L., +"On the Clifford-Littlewood-Eckmann groups: a new look at periodicity mod 8", +Rocky Mountains Journal of Mathematics, vol 19, no. 3, (Summer 1989) +\bibitem{7} Leopardi, Paul "Quick Introduction to Clifford Algebras"\\ +{\bf http://web.maths.unsw.edu.au/~leopardi/clifford-2003-06-05.pdf} +\bibitem{8} Cartan, Elie and Study, Eduard +"Nombres Complexes", +Encyclopaedia Sciences Math\'ematique, \'edition fran\c caise, 15, (1908), +d'apr\`es l'article allemand de Eduard Study, pp329-468. Reproduced as +pp107-246 of \cite{17} +\bibitem{9} Hestenes, David and Sobczyck, Garret +"Clifford algebra to geometric calculus: a unified language for +mathematics and physics", D. Reidel, (1984) +\bibitem{10} Wene, G.P., +"The Idempotent structure of an infinite dimensional Clifford algebra", +pp161-164 of \cite{13} (1995) +\bibitem{11} Ashdown, M. +"GA Package for Maple V",\\ +http://www.mrao.cam.ac.uk/~clifford/software/GA/GAhelp5.html +\bibitem{12} Doran, Chris and Lasenby, Anthony, +"Geometric Algebra for Physicists" +Cambridge University Press (2003) ISBN 0-521-48022-1 +\bibitem{13} Micali, A., Boudet, R., Helmstetter, J. (eds), +"Clifford algebras and their applications in mathematical physics: +proceedings of second workshop held at Montpellier, France, 1989", +Kluwer Academic Publishers (1992) +\bibitem{14} Porteous, I., +"Topological geometry" +Van Nostrand Reinhold, (1969) +\bibitem{15} Sommer, G. (editor), +"Geometric Computing with Clifford Algebras", +Springer, (2001) +\bibitem{16} Ablamowicz, R., Lounesto, P., Parra, J.M. (eds) +"Clifford algebras with numeric and symbolic computations", +Birkh\"auser (1996) +\bibitem{17} Cartan, Elie and Montel, P. (eds), +"\OE uvres Compl\`etes" Gauthier-Villars, (1953) +\end{thebibliography} +\end{document} |