aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/input/as-eg3.input.pamphlet22
-rw-r--r--src/input/derham.input.pamphlet2
-rw-r--r--src/input/draw2dSF.input.pamphlet2
-rw-r--r--src/input/e02ddf.input.pamphlet2
-rw-r--r--src/input/easter.input.pamphlet26
-rw-r--r--src/input/fixed.input.pamphlet8
-rw-r--r--src/input/gonshor.input.pamphlet8
-rw-r--r--src/input/heat.input.pamphlet4
-rw-r--r--src/input/lodo.input.pamphlet2
-rw-r--r--src/input/lodo2.input.pamphlet4
-rw-r--r--src/input/marcbench.input.pamphlet124
-rw-r--r--src/input/tutchap67.input.pamphlet14
-rw-r--r--src/input/wester.input.pamphlet4
13 files changed, 111 insertions, 111 deletions
diff --git a/src/input/as-eg3.input.pamphlet b/src/input/as-eg3.input.pamphlet
index 239949a8..ce9c9f29 100644
--- a/src/input/as-eg3.input.pamphlet
+++ b/src/input/as-eg3.input.pamphlet
@@ -19,25 +19,25 @@
)compile hilbert.as
monomial l == (l::Vector SingleInteger) pretend Monomial
-mon1 := monomial [4,0,0,0];
-mon2:= monomial [3,3,0,0];
-mon3 := monomial [3,2,1,0];
-mon4 := monomial[3,1,2,0];
-mon5 := monomial[0,2,0,1];
-mon6 := monomial[0,1,0,5];
-l := [mon1, mon2, mon3, mon4, mon5, mon6];
+mon1 := monomial [4,0,0,0]
+mon2:= monomial [3,3,0,0]
+mon3 := monomial [3,2,1,0]
+mon4 := monomial[3,1,2,0]
+mon5 := monomial[0,2,0,1]
+mon6 := monomial[0,1,0,5]
+l := [mon1, mon2, mon3, mon4, mon5, mon6]
Hilbert l
-idA := varMonomsPower(6,5);
+idA := varMonomsPower(6,5)
#idA
Hilbert idA
-idB := varMonomsPower(6,6);
+idB := varMonomsPower(6,6)
#idB
Hilbert idB
-idC := varMonomsPower(12,3);
+idC := varMonomsPower(12,3)
#idC
Hilbert idC
idD:=[monomial[2,0,0,0],monomial[1,1,0,0],monomial[1,0,1,0],monomial[1,0,0,1],_
- monomial[0,3,0,0],monomial[0,2,1,0]]^4;
+ monomial[0,3,0,0],monomial[0,2,1,0]]^4
#idD
Hilbert idD
diff --git a/src/input/derham.input.pamphlet b/src/input/derham.input.pamphlet
index 760c0de1..5a1d2c59 100644
--- a/src/input/derham.input.pamphlet
+++ b/src/input/derham.input.pamphlet
@@ -27,7 +27,7 @@ dz : der := generator(3)
[dx,dy,dz] := [generator(i)$der for i in 1..3]
alpha : der := f*dx + g*dy + h*dz
beta : der := cos(tan(x*y*z)+x*y*z)*dx + x*dy
-exteriorDifferential alpha;
+exteriorDifferential alpha
exteriorDifferential %
gamma := alpha * beta
exteriorDifferential(gamma) - (exteriorDifferential(alpha)*beta - alpha * exteriorDifferential(beta))
diff --git a/src/input/draw2dSF.input.pamphlet b/src/input/draw2dSF.input.pamphlet
index 6edaed4a..93836dbd 100644
--- a/src/input/draw2dSF.input.pamphlet
+++ b/src/input/draw2dSF.input.pamphlet
@@ -35,7 +35,7 @@ readTheFile(filename,numberOfPoints) ==
-- first we read the file of x, y data
-- we cheat to get at the AXIOM variable
axiom:=string getEnv("AXIOM")$Lisp
-pts:=readTheFile(axiom "/../../src/input/draw2dSF.data",1024);
+pts:=readTheFile(axiom "/../../src/input/draw2dSF.data",1024)
-- then we plot the points
drawList(pts)
diff --git a/src/input/e02ddf.input.pamphlet b/src/input/e02ddf.input.pamphlet
index 4c95a93d..b49cb70c 100644
--- a/src/input/e02ddf.input.pamphlet
+++ b/src/input/e02ddf.input.pamphlet
@@ -45,7 +45,7 @@ nx:=0
lamda:=new(1,14,0.0)$Matrix SF
ny:=0
mu:=new(1,14,0.0)$Matrix SF
-wrk:=new(1,11016,0.0)$Matrix SF;
+wrk:=new(1,11016,0.0)$Matrix SF
result:=e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,-1)
@
\eject
diff --git a/src/input/easter.input.pamphlet b/src/input/easter.input.pamphlet
index 7de1aee3..f8b9dcbc 100644
--- a/src/input/easter.input.pamphlet
+++ b/src/input/easter.input.pamphlet
@@ -30,10 +30,10 @@ factor(%)
-- Infinite precision rational numbers
1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10
-- Arbitrary precision floating point numbers
-digits(50);
+digits(50)
-- This number is nearly an integer
exp(sqrt(163.)*%pi)
-digits(20);
+digits(20)
-- Special functions
besselJ(2, 1 + %i)
-- Complete decimal expansion of a rational number
@@ -65,7 +65,7 @@ factor(%)
-- Factor polynomials over finite fields and field extensions
p:= x**4 - 3*x**2 + 1
factor(p)
-phi:= rootOf(phi**2 - phi - 1);
+phi:= rootOf(phi**2 - phi - 1)
factor(p, [phi])
factor(p :: Polynomial(PrimeField(5)))
expand(%)
@@ -88,7 +88,7 @@ sincosAngles:= rule _
sin((n | integer?(n)) * x) == _
sin((n - 1)*x) * cos(x) + cos((n - 1)*x) * sin(x) )
sincosAngles r
-r:= 'r;
+r:= 'r
-- ---------- Determining Zero Equivalence ----------
-- The following expressions are all equal to zero
sqrt(997) - (997**3)**(1/6)
@@ -190,7 +190,7 @@ m:= matrix([[ 5, -3, -7], _
[ 2, -3, -4]])
characteristicPolynomial(m, lambda)
solve(% = 0, lambda)
-m:= 'm;
+m:= 'm
-- ---------- Tensors ----------
-- ---------- Sums and Products ----------
-- Sums: finite and infinite
@@ -205,8 +205,8 @@ limit((1 + 1/n)**n, n = %plusInfinity)
limit((1 - cos(x))/x**2, x = 0)
-- Apply the chain rule---this is important for PDEs and many other
-- applications
-y:= operator('y);
-x:= operator('x);
+y:= operator('y)
+x:= operator('x)
D(y(x(t)), t, 2)
)clear properties x y
-- ---------- Indefinite Integrals ----------
@@ -277,7 +277,7 @@ exp(-x)*sin(x)
series(%, x = 0)
-- Derive an explicit Taylor series solution of y as a function of x from the
-- following implicit relation
-y:= operator('y);
+y:= operator('y)
x = sin(y(x)) + cos(y(x))
seriesSolve(%, y, x = 1, 0)
)clear properties y
@@ -289,19 +289,19 @@ laplace(cos((w - 1)*t), t, s)
inverseLaplace(%, s, t)
-- ---------- Difference and Differential Equations ----------
-- Second order linear recurrence equation
-r:= operator('r);
+r:= operator('r)
r(n + 2) - 2 * r(n + 1) + r(n) = 2
[%, r(0) = 1, r(1) = m]
)clear properties r
-- Second order ODE with initial conditions---solve first using Laplace
-- transforms
-f:= operator('f);
+f:= operator('f)
ode:= D(f(t), t, 2) + 4*f(t) = sin(2*t)
map(e +-> laplace(e, t, s), %)
-- Now, solve the ODE directly
solve(ode, f, t = 0, [0, 0])
-- First order linear ODE
-y:= operator('y);
+y:= operator('y)
x**2 * D(y(x), x) + 3*x*y(x) = sin(x)/x
solve(%, y, x)
-- Nonlinear ODE
@@ -309,13 +309,13 @@ D(y(x), x, 2) + y(x)*D(y(x), x)**3 = 0
solve(%, y, x)
-- A simple parametric ODE
D(y(x, a), x) = a*y(x, a)
-solve(%, y, x);
+solve(%, y, x)
-- ODE with boundary conditions. This problem has nontrivial solutions
-- y(x) = A sin([pi/2 + n pi] x) for n an arbitrary integer.
solve(D(y(x), x, 2) + k**2*y(x) = 0, y, x)
-- bc(%, x = 0, y = 0, x = 1, D(y(x), x) = 0)
-- System of two linear, constant coefficient ODEs
-x:= operator('x);
+x:= operator('x)
system:= [D(x(t), t) = x(t) - y(t), D(y(t), t) = x(t) + y(t)]
-- Check the answer
-- Triangular system of two ODEs
diff --git a/src/input/fixed.input.pamphlet b/src/input/fixed.input.pamphlet
index e4ff69da..f72d1903 100644
--- a/src/input/fixed.input.pamphlet
+++ b/src/input/fixed.input.pamphlet
@@ -373,10 +373,10 @@ factor %
)clear all
-- Do this in a virgin system
)set expose add constructor SquareMatrix
-S2:= SquareMatrix(2,FRAC POLY INT);
-V2: S2 := matrix([[v,-v],[-v,v]]);
-I2: S2 := 1;
-m:=5;
+S2:= SquareMatrix(2,FRAC POLY INT)
+V2: S2 := matrix([[v,-v],[-v,v]])
+I2: S2 := 1
+m:=5
l: List(S2) := append(cons(V2+h*I2,_
[(V2+2*h*I2) for i in 2 .. (m-1)]),_
[V2+h*I2])
diff --git a/src/input/gonshor.input.pamphlet b/src/input/gonshor.input.pamphlet
index 51f08777..1bd749ea 100644
--- a/src/input/gonshor.input.pamphlet
+++ b/src/input/gonshor.input.pamphlet
@@ -75,10 +75,10 @@ commutative?()$GonshorGenetic
associative?()$GonshorGenetic
-- The canonical basis:
-e0 : GonshorGenetic := [1, 0, 0, 0] :: Vector R ;
-e1 : GonshorGenetic := [0, 1, 0, 0] :: Vector R ;
-e2 : GonshorGenetic := [0, 0, 1, 0] :: Vector R ;
-e3 : GonshorGenetic := [0, 0, 0, 1] :: Vector R ;
+e0 : GonshorGenetic := [1, 0, 0, 0] :: Vector R
+e1 : GonshorGenetic := [0, 1, 0, 0] :: Vector R
+e2 : GonshorGenetic := [0, 0, 1, 0] :: Vector R
+e3 : GonshorGenetic := [0, 0, 0, 1] :: Vector R
-- A generic element of the algebra:
diff --git a/src/input/heat.input.pamphlet b/src/input/heat.input.pamphlet
index d1bf86c9..11e75b00 100644
--- a/src/input/heat.input.pamphlet
+++ b/src/input/heat.input.pamphlet
@@ -20,10 +20,10 @@
)set messages autoload off
)set quit unprotected
-- This is the heat equation
-u:= operator('u);
+u:= operator('u)
heat:= D(u(x, t), t) - D(u(x, t), x, 2) = 0
-- This is the similarity form of the proposed solution
-f:= operator('f);
+f:= operator('f)
s:= rule(u(x, t) == f(x/sqrt(t))/sqrt(t))
-- Apply s to the heat equation
s(lhs(heat)) = 0
diff --git a/src/input/lodo.input.pamphlet b/src/input/lodo.input.pamphlet
index e19d23dc..62ebf724 100644
--- a/src/input/lodo.input.pamphlet
+++ b/src/input/lodo.input.pamphlet
@@ -107,7 +107,7 @@ leq
------------------------------------------------------------------------
)clear all
PZ := UP(x,INT); Vect := DPMM(3, PZ, SQMATRIX(3,PZ), PZ);
-Modo := LODO2(SQMATRIX(3,PZ), Vect);
+Modo := LODO2(SQMATRIX(3,PZ), Vect)
p := directProduct([3*x**2 + 1, 2*x, 7*x**3 + 2*x]::(VECTOR(PZ)))@Vect
m := [[x**2, 1, 0], [1, x**4, 0], [0, 0, 4*x**2]]::(SQMATRIX(3,PZ))
diff --git a/src/input/lodo2.input.pamphlet b/src/input/lodo2.input.pamphlet
index 6a26f83e..b315bb0c 100644
--- a/src/input/lodo2.input.pamphlet
+++ b/src/input/lodo2.input.pamphlet
@@ -36,8 +36,8 @@ c := (1/9)*b*(a + b)**2
PZ := UnivariatePolynomial(x,Integer)
x:PZ := 'x
Mat := SquareMatrix(3,PZ)
-Vect := DPMM(3, PZ, Mat, PZ);
-Modo := LODO2(Mat, Vect);
+Vect := DPMM(3, PZ, Mat, PZ)
+Modo := LODO2(Mat, Vect)
m:Mat := matrix [[x**2,1,0],[1,x**4,0],[0,0,4*x**2]]
p:Vect := directProduct [3*x**2+1,2*x,7*x**3+2*x]
q: Vect := m * p
diff --git a/src/input/marcbench.input.pamphlet b/src/input/marcbench.input.pamphlet
index 4cdc0249..5940fa55 100644
--- a/src/input/marcbench.input.pamphlet
+++ b/src/input/marcbench.input.pamphlet
@@ -23,10 +23,10 @@ output(" Ex. 1: 4-body ")$OutputPackage
-----------------------------------------------------------------------------
)clear all
-ls : List Symbol := [p,s,phi];
-V := OVAR(ls);
-R := Integer;
-E := IndexedExponents V;
+ls : List Symbol := [p,s,phi]
+V := OVAR(ls)
+R := Integer
+E := IndexedExponents V
P := NSMP(R, V);
LP := List(P);
@@ -61,31 +61,31 @@ ls : List Symbol := [x,y,z,t,u];
V := OVAR(ls);
R := Integer;
E := IndexedExponents V;
-P := NSMP(R, V);
-LP := List(P);
+P := NSMP(R, V)
+LP := List(P)
-----------------------------------------------------------------------------
--% Initialisations
-----------------------------------------------------------------------------
-x: P := 'x;
-y: P := 'y;
-z: P := 'z;
-t: P := 't;
-u: P := 'u;
-f0 := u-2;
-f1:= 2*(u-1)^2+2*(x-z*x+z^2)+y^2*(x-1)^2-2*u*x+2*y*t*(1-x)*(x-z)+2*u*z*t*(t-y)+u^2*t^2*(1-2*z)+2*u*t^2*(z-x)+2*u*t*y*(z-1)+2*u*z*x*(y+1)+(u^2-2*u)*z^2*t^2+2*u^2*z^2+4*u*(1-u)*z+t^2*(z-x)^2;
-f2:= t*(2*z+1)*(x-z)+y*(z+2)*(1-x)+u*(u-2)*t+u*(1-2*u)*z*t+u*y*(x+u-z*x-1)+u*(u+1)*z^2*t;
-f3:= -u^2*(z-1)^2+2*z*(z-x)-2*(x-1);
-f4:= u^2+4*(z-x^2)+3*y^2*(x-1)^2-3*t^2*(z-x)^2 +3*u^2*t^2*(z-1)^2+u^2*z*(z-2)+6*u*t*y*(z+x+z*x-1);
-lp :=[f0,f1,f2,f3,f4];
+x: P := 'x
+y: P := 'y
+z: P := 'z
+t: P := 't
+u: P := 'u
+f0 := u-2
+f1:= 2*(u-1)^2+2*(x-z*x+z^2)+y^2*(x-1)^2-2*u*x+2*y*t*(1-x)*(x-z)+2*u*z*t*(t-y)+u^2*t^2*(1-2*z)+2*u*t^2*(z-x)+2*u*t*y*(z-1)+2*u*z*x*(y+1)+(u^2-2*u)*z^2*t^2+2*u^2*z^2+4*u*(1-u)*z+t^2*(z-x)^2
+f2:= t*(2*z+1)*(x-z)+y*(z+2)*(1-x)+u*(u-2)*t+u*(1-2*u)*z*t+u*y*(x+u-z*x-1)+u*(u+1)*z^2*t
+f3:= -u^2*(z-1)^2+2*z*(z-x)-2*(x-1)
+f4:= u^2+4*(z-x^2)+3*y^2*(x-1)^2-3*t^2*(z-x)^2 +3*u^2*t^2*(z-1)^2+u^2*z*(z-2)+6*u*t*y*(z+x+z*x-1)
+lp :=[f0,f1,f2,f3,f4]
-T := REGSET(R,E,V,P);
+T := REGSET(R,E,V,P)
)set message time off
-zeroSetSplit(lp)$T;
+zeroSetSplit(lp)$T
)set message time on
-zeroSetSplit(lp)$T;
+zeroSetSplit(lp)$T
)set message time off
output(" Ex. 3: Rose ")$OutputPackage
@@ -95,12 +95,12 @@ output(" Ex. 3: Rose ")$OutputPackage
-----------------------------------------------------------------------------
)clear all
-ls : List Symbol := [z,y,x];
-V := OVAR(ls);
-R := Integer;
-E := IndexedExponents V;
-P := NSMP(R, V);
-LP := List(P);
+ls : List Symbol := [z,y,x]
+V := OVAR(ls)
+R := Integer
+E := IndexedExponents V
+P := NSMP(R, V)
+LP := List(P)
-----------------------------------------------------------------------------
--% Initialisations
@@ -109,17 +109,17 @@ LP := List(P);
x: P := 'x;
y: P := 'y;
z: P := 'z;
-f1 := 7*y**4 - 20*x**2 ;
-f2:= (2160*x**2 + 1512*x +315)*z**4-4000*x**2-2800*x-490 ;
-f3 := (67200000*x**5 + 94080000*x**4 + 40924800*x**3 + 2634240*x**2-2300844*x-432180)*y**3 + ((40320000*x**6 + 28800000*x**5 + 21168000*x**3 + 4939200*x**2 + 347508*x)*z)*y**2 + ((-23520000*x**4-41395200*x**3-26726560*x**2-7727104*x-852355)*z**2)*y + (-10080000*x**4-28224000*x**3-15288000*x**2-1978032*x-180075)*z**3 ;
-lp := [f1,f2,f3];
+f1 := 7*y**4 - 20*x**2
+f2:= (2160*x**2 + 1512*x +315)*z**4-4000*x**2-2800*x-490
+f3 := (67200000*x**5 + 94080000*x**4 + 40924800*x**3 + 2634240*x**2-2300844*x-432180)*y**3 + ((40320000*x**6 + 28800000*x**5 + 21168000*x**3 + 4939200*x**2 + 347508*x)*z)*y**2 + ((-23520000*x**4-41395200*x**3-26726560*x**2-7727104*x-852355)*z**2)*y + (-10080000*x**4-28224000*x**3-15288000*x**2-1978032*x-180075)*z**3
+lp := [f1,f2,f3]
-T := REGSET(R,E,V,P);
+T := REGSET(R,E,V,P)
)set message time off
-zeroSetSplit(lp)$T;
+zeroSetSplit(lp)$T
)set message time on
-zeroSetSplit(lp)$T;
+zeroSetSplit(lp)$T
)set message time off
output(" Ex. 4: L-3 ")$OutputPackage
@@ -150,11 +150,11 @@ p3 := x + y + z^3 + t-1;
p4 := x + y + z + t^3 -1;
lp := [p1,p2,p3,p4];
-T := REGSET(R,E,V,P);
+T := REGSET(R,E,V,P)
)set message time off
-zeroSetSplit(lp)$T;
+zeroSetSplit(lp)$T
)set message time on
-zeroSetSplit(lp)$T;
+zeroSetSplit(lp)$T
)set message time off
output(" Ex. 5:Butcher ")$OutputPackage
@@ -183,21 +183,21 @@ t: P := 't;
u: P := 'u;
v: P := 'v;
w: P := 'w;
-f0 := b1 + y + z - t - w;
-f1 := 2*z*u + 2*y*v + 2*t*w - 2*w**2 - w - 1 ;
-f2 := 3*z*u**2 + 3*y*v**2 - 3*t*w**2 + 3*w**3 + 3*w**2 - t + 4*w ;
-f3 := 6*x*z*v - 6*t*w**2 + 6*w**3 - 3*t*w + 6*w**2 - t + 4*w ;
-f4 := 4*z*u**3+ 4*y*v**3+ 4*t*w**3- 4*w**4 - 6*w**3+ 4*t*w- 10*w**2- w- 1 ;
-f5 := 8*x*z*u*v +8*t*w**3 -8*w**4 +4*t*w**2 -12*w**3 +4*t*w -14*w**2 -3*w -1 ;
-f6 := 12*x*z*v**2+12*t*w**3 -12*w**4 +12*t*w**2 -18*w**3 +8*t*w -14*w**2 -w -1;
-f7 := -24*t*w**3 + 24*w**4 - 24*t*w**2 + 36*w**3 - 8*t*w + 26*w**2 + 7*w + 1 ;
-
-lp := [f0,f1,f2,f3,f4,f5,f6,f7];
-T := REGSET(R,E,V,P);
+f0 := b1 + y + z - t - w
+f1 := 2*z*u + 2*y*v + 2*t*w - 2*w**2 - w - 1
+f2 := 3*z*u**2 + 3*y*v**2 - 3*t*w**2 + 3*w**3 + 3*w**2 - t + 4*w
+f3 := 6*x*z*v - 6*t*w**2 + 6*w**3 - 3*t*w + 6*w**2 - t + 4*w
+f4 := 4*z*u**3+ 4*y*v**3+ 4*t*w**3- 4*w**4 - 6*w**3+ 4*t*w- 10*w**2- w- 1
+f5 := 8*x*z*u*v +8*t*w**3 -8*w**4 +4*t*w**2 -12*w**3 +4*t*w -14*w**2 -3*w -1
+f6 := 12*x*z*v**2+12*t*w**3 -12*w**4 +12*t*w**2 -18*w**3 +8*t*w -14*w**2 -w -1
+f7 := -24*t*w**3 + 24*w**4 - 24*t*w**2 + 36*w**3 - 8*t*w + 26*w**2 + 7*w + 1
+
+lp := [f0,f1,f2,f3,f4,f5,f6,f7]
+T := REGSET(R,E,V,P)
)set message time off
-zeroSetSplit(lp)$T;
+zeroSetSplit(lp)$T
)set message time on
-zeroSetSplit(lp)$T;
+zeroSetSplit(lp)$T
)set message time off
output(" Ex. 6 : Hairer-2 ")$OutputPackage
@@ -247,9 +247,9 @@ lp := [f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11];
T := REGSET(R,E,V,P);
)set message time off
-zeroSetSplit(lp)$T;
+zeroSetSplit(lp)$T
)set message time on
-zeroSetSplit(lp)$T;
+zeroSetSplit(lp)$T
)set message time off
output(" Ex. 7 : Lichtblau ")$OutputPackage
@@ -279,9 +279,9 @@ lp := [p1, p2];
T := REGSET(R,E,V,P);
)set message time off
-zeroSetSplit(lp)$T;
+zeroSetSplit(lp)$T
)set message time on
-zeroSetSplit(lp)$T;
+zeroSetSplit(lp)$T
)set message time off
output(" Ex. 8: Liu original ")$OutputPackage
@@ -316,9 +316,9 @@ lp := [p1,p2,p3,p4] ;
T := REGSET(R,E,V,P);
)set message time off
-zeroSetSplit(lp)$T;
+zeroSetSplit(lp)$T
)set message time on
-zeroSetSplit(lp)$T;
+zeroSetSplit(lp)$T
)set message time off
output(" Ex. 9: Liu homog. ")$OutputPackage
@@ -354,9 +354,9 @@ lp := [p1,p2,p3,p4] ;
T := REGSET(R,E,V,P);
)set message time off
-zeroSetSplit(lp)$T;
+zeroSetSplit(lp)$T
)set message time on
-zeroSetSplit(lp)$T;
+zeroSetSplit(lp)$T
)set message time off
output(" Ex. 10: Vermeer ")$OutputPackage
@@ -405,7 +405,7 @@ output(" Ex. 11: Wu-Wang-2" )
-----------------------------------------------------------------------------
)clear all
-ls : List Symbol := reverse [x10,x11,x12,x13,x21,x22,x23,x30,x101,x102,x103,x104,x105];
+ls : List Symbol := reverse [x10,x11,x12,x13,x21,x22,x23,x30,x101,x102,x103,x104,x105]
V := OVAR(ls);
R := Integer;
E := IndexedExponents V;
@@ -450,9 +450,9 @@ lp:=[f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16];
T := REGSET(R,E,V,P);
)set message time off
-zeroSetSplit(lp)$T;
+zeroSetSplit(lp)$T
)set message time on
-zeroSetSplit(lp)$T;
+zeroSetSplit(lp)$T
)set message time off
output(" Ex. 12: f-633 ")$OutputPackage
@@ -498,9 +498,9 @@ lp := [p1,p2,p3,p4,p6,p7,p8,p9,p10];
T := REGSET(R,E,V,P);
)set message time off
-zeroSetSplit(lp)$T;
+zeroSetSplit(lp)$T
)set message time on
-zeroSetSplit(lp)$T;
+zeroSetSplit(lp)$T
)set message time off
@
diff --git a/src/input/tutchap67.input.pamphlet b/src/input/tutchap67.input.pamphlet
index f730cf8f..1d5c1f56 100644
--- a/src/input/tutchap67.input.pamphlet
+++ b/src/input/tutchap67.input.pamphlet
@@ -127,8 +127,8 @@ solve(matD,[5,6,7,9])
hilbert3 :: Matrix DoubleFloat -- continuing the previous session
% * inverse %
matrix [[1/(i+j) for i in 1..11] for j in 1..11]::Matrix DoubleFloat;
-badUnit := % * inverse %;
-diagEls := set [%(i,i) for i in 1..11];
+badUnit := % * inverse %
+diagEls := set [%(i,i) for i in 1..11]
min diagEls
max diagEls
offDiags := empty()$Set DoubleFloat
@@ -137,14 +137,14 @@ for i in 1..11 repeat _
offDiags := union(offDiags,badUnit(i,j))
min offDiags
max offDiags
-hilbert11 := matrix [[1/(i+j) for i in 1..11] for j in 1..11];
+hilbert11 := matrix [[1/(i+j) for i in 1..11] for j in 1..11]
% * inverse %
detHilbert3 := determinant hilbert3
detHilbert11 := determinant hilbert11
% :: DoubleFloat
determinant(hilbert11::Matrix DoubleFloat)
-test3 := hilbert3 :: Matrix Polynomial Fraction Integer;
-test3(1,1) := (1 + eps)/2;
+test3 := hilbert3 :: Matrix Polynomial Fraction Integer
+test3(1,1) := (1 + eps)/2
determinant test3
(% - detHilbert3)/detHilbert3
for i in 1..3 repeat for j in 1..3 repeat _
@@ -152,8 +152,8 @@ for i in 1..3 repeat for j in 1..3 repeat _
test3
(determinant test3 - detHilbert3)/detHilbert3
error3 := matrix [[eps[i,j] for i in 1..3] for j in 1..3]
-test3 := hilbert3 + t*error3;
-detErr := (determinant test3 - detHilbert3)/detHilbert3;
+test3 := hilbert3 + t*error3
+detErr := (determinant test3 - detHilbert3)/detHilbert3
detErrReduced := coefficient(%,'t,1)
coefficient(detErr,'t,0)
epses := variables detErrReduced
diff --git a/src/input/wester.input.pamphlet b/src/input/wester.input.pamphlet
index 5e08228b..0576c2f6 100644
--- a/src/input/wester.input.pamphlet
+++ b/src/input/wester.input.pamphlet
@@ -30,10 +30,10 @@ factor(%)
-- Infinite precision rational numbers
1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10
-- Arbitrary precision floating point numbers
-digits(50);
+digits(50)
-- This number is nearly an integer
exp(sqrt(163.)*%pi)
-digits(20);
+digits(20)
-- Special functions
besselJ(2, 1 + %i)
-- Complete decimal expansion of a rational number