diff options
-rw-r--r-- | src/input/as-eg3.input.pamphlet | 22 | ||||
-rw-r--r-- | src/input/derham.input.pamphlet | 2 | ||||
-rw-r--r-- | src/input/draw2dSF.input.pamphlet | 2 | ||||
-rw-r--r-- | src/input/e02ddf.input.pamphlet | 2 | ||||
-rw-r--r-- | src/input/easter.input.pamphlet | 26 | ||||
-rw-r--r-- | src/input/fixed.input.pamphlet | 8 | ||||
-rw-r--r-- | src/input/gonshor.input.pamphlet | 8 | ||||
-rw-r--r-- | src/input/heat.input.pamphlet | 4 | ||||
-rw-r--r-- | src/input/lodo.input.pamphlet | 2 | ||||
-rw-r--r-- | src/input/lodo2.input.pamphlet | 4 | ||||
-rw-r--r-- | src/input/marcbench.input.pamphlet | 124 | ||||
-rw-r--r-- | src/input/tutchap67.input.pamphlet | 14 | ||||
-rw-r--r-- | src/input/wester.input.pamphlet | 4 |
13 files changed, 111 insertions, 111 deletions
diff --git a/src/input/as-eg3.input.pamphlet b/src/input/as-eg3.input.pamphlet index 239949a8..ce9c9f29 100644 --- a/src/input/as-eg3.input.pamphlet +++ b/src/input/as-eg3.input.pamphlet @@ -19,25 +19,25 @@ )compile hilbert.as monomial l == (l::Vector SingleInteger) pretend Monomial -mon1 := monomial [4,0,0,0]; -mon2:= monomial [3,3,0,0]; -mon3 := monomial [3,2,1,0]; -mon4 := monomial[3,1,2,0]; -mon5 := monomial[0,2,0,1]; -mon6 := monomial[0,1,0,5]; -l := [mon1, mon2, mon3, mon4, mon5, mon6]; +mon1 := monomial [4,0,0,0] +mon2:= monomial [3,3,0,0] +mon3 := monomial [3,2,1,0] +mon4 := monomial[3,1,2,0] +mon5 := monomial[0,2,0,1] +mon6 := monomial[0,1,0,5] +l := [mon1, mon2, mon3, mon4, mon5, mon6] Hilbert l -idA := varMonomsPower(6,5); +idA := varMonomsPower(6,5) #idA Hilbert idA -idB := varMonomsPower(6,6); +idB := varMonomsPower(6,6) #idB Hilbert idB -idC := varMonomsPower(12,3); +idC := varMonomsPower(12,3) #idC Hilbert idC idD:=[monomial[2,0,0,0],monomial[1,1,0,0],monomial[1,0,1,0],monomial[1,0,0,1],_ - monomial[0,3,0,0],monomial[0,2,1,0]]^4; + monomial[0,3,0,0],monomial[0,2,1,0]]^4 #idD Hilbert idD diff --git a/src/input/derham.input.pamphlet b/src/input/derham.input.pamphlet index 760c0de1..5a1d2c59 100644 --- a/src/input/derham.input.pamphlet +++ b/src/input/derham.input.pamphlet @@ -27,7 +27,7 @@ dz : der := generator(3) [dx,dy,dz] := [generator(i)$der for i in 1..3] alpha : der := f*dx + g*dy + h*dz beta : der := cos(tan(x*y*z)+x*y*z)*dx + x*dy -exteriorDifferential alpha; +exteriorDifferential alpha exteriorDifferential % gamma := alpha * beta exteriorDifferential(gamma) - (exteriorDifferential(alpha)*beta - alpha * exteriorDifferential(beta)) diff --git a/src/input/draw2dSF.input.pamphlet b/src/input/draw2dSF.input.pamphlet index 6edaed4a..93836dbd 100644 --- a/src/input/draw2dSF.input.pamphlet +++ b/src/input/draw2dSF.input.pamphlet @@ -35,7 +35,7 @@ readTheFile(filename,numberOfPoints) == -- first we read the file of x, y data -- we cheat to get at the AXIOM variable axiom:=string getEnv("AXIOM")$Lisp -pts:=readTheFile(axiom "/../../src/input/draw2dSF.data",1024); +pts:=readTheFile(axiom "/../../src/input/draw2dSF.data",1024) -- then we plot the points drawList(pts) diff --git a/src/input/e02ddf.input.pamphlet b/src/input/e02ddf.input.pamphlet index 4c95a93d..b49cb70c 100644 --- a/src/input/e02ddf.input.pamphlet +++ b/src/input/e02ddf.input.pamphlet @@ -45,7 +45,7 @@ nx:=0 lamda:=new(1,14,0.0)$Matrix SF ny:=0 mu:=new(1,14,0.0)$Matrix SF -wrk:=new(1,11016,0.0)$Matrix SF; +wrk:=new(1,11016,0.0)$Matrix SF result:=e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,-1) @ \eject diff --git a/src/input/easter.input.pamphlet b/src/input/easter.input.pamphlet index 7de1aee3..f8b9dcbc 100644 --- a/src/input/easter.input.pamphlet +++ b/src/input/easter.input.pamphlet @@ -30,10 +30,10 @@ factor(%) -- Infinite precision rational numbers 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10 -- Arbitrary precision floating point numbers -digits(50); +digits(50) -- This number is nearly an integer exp(sqrt(163.)*%pi) -digits(20); +digits(20) -- Special functions besselJ(2, 1 + %i) -- Complete decimal expansion of a rational number @@ -65,7 +65,7 @@ factor(%) -- Factor polynomials over finite fields and field extensions p:= x**4 - 3*x**2 + 1 factor(p) -phi:= rootOf(phi**2 - phi - 1); +phi:= rootOf(phi**2 - phi - 1) factor(p, [phi]) factor(p :: Polynomial(PrimeField(5))) expand(%) @@ -88,7 +88,7 @@ sincosAngles:= rule _ sin((n | integer?(n)) * x) == _ sin((n - 1)*x) * cos(x) + cos((n - 1)*x) * sin(x) ) sincosAngles r -r:= 'r; +r:= 'r -- ---------- Determining Zero Equivalence ---------- -- The following expressions are all equal to zero sqrt(997) - (997**3)**(1/6) @@ -190,7 +190,7 @@ m:= matrix([[ 5, -3, -7], _ [ 2, -3, -4]]) characteristicPolynomial(m, lambda) solve(% = 0, lambda) -m:= 'm; +m:= 'm -- ---------- Tensors ---------- -- ---------- Sums and Products ---------- -- Sums: finite and infinite @@ -205,8 +205,8 @@ limit((1 + 1/n)**n, n = %plusInfinity) limit((1 - cos(x))/x**2, x = 0) -- Apply the chain rule---this is important for PDEs and many other -- applications -y:= operator('y); -x:= operator('x); +y:= operator('y) +x:= operator('x) D(y(x(t)), t, 2) )clear properties x y -- ---------- Indefinite Integrals ---------- @@ -277,7 +277,7 @@ exp(-x)*sin(x) series(%, x = 0) -- Derive an explicit Taylor series solution of y as a function of x from the -- following implicit relation -y:= operator('y); +y:= operator('y) x = sin(y(x)) + cos(y(x)) seriesSolve(%, y, x = 1, 0) )clear properties y @@ -289,19 +289,19 @@ laplace(cos((w - 1)*t), t, s) inverseLaplace(%, s, t) -- ---------- Difference and Differential Equations ---------- -- Second order linear recurrence equation -r:= operator('r); +r:= operator('r) r(n + 2) - 2 * r(n + 1) + r(n) = 2 [%, r(0) = 1, r(1) = m] )clear properties r -- Second order ODE with initial conditions---solve first using Laplace -- transforms -f:= operator('f); +f:= operator('f) ode:= D(f(t), t, 2) + 4*f(t) = sin(2*t) map(e +-> laplace(e, t, s), %) -- Now, solve the ODE directly solve(ode, f, t = 0, [0, 0]) -- First order linear ODE -y:= operator('y); +y:= operator('y) x**2 * D(y(x), x) + 3*x*y(x) = sin(x)/x solve(%, y, x) -- Nonlinear ODE @@ -309,13 +309,13 @@ D(y(x), x, 2) + y(x)*D(y(x), x)**3 = 0 solve(%, y, x) -- A simple parametric ODE D(y(x, a), x) = a*y(x, a) -solve(%, y, x); +solve(%, y, x) -- ODE with boundary conditions. This problem has nontrivial solutions -- y(x) = A sin([pi/2 + n pi] x) for n an arbitrary integer. solve(D(y(x), x, 2) + k**2*y(x) = 0, y, x) -- bc(%, x = 0, y = 0, x = 1, D(y(x), x) = 0) -- System of two linear, constant coefficient ODEs -x:= operator('x); +x:= operator('x) system:= [D(x(t), t) = x(t) - y(t), D(y(t), t) = x(t) + y(t)] -- Check the answer -- Triangular system of two ODEs diff --git a/src/input/fixed.input.pamphlet b/src/input/fixed.input.pamphlet index e4ff69da..f72d1903 100644 --- a/src/input/fixed.input.pamphlet +++ b/src/input/fixed.input.pamphlet @@ -373,10 +373,10 @@ factor % )clear all -- Do this in a virgin system )set expose add constructor SquareMatrix -S2:= SquareMatrix(2,FRAC POLY INT); -V2: S2 := matrix([[v,-v],[-v,v]]); -I2: S2 := 1; -m:=5; +S2:= SquareMatrix(2,FRAC POLY INT) +V2: S2 := matrix([[v,-v],[-v,v]]) +I2: S2 := 1 +m:=5 l: List(S2) := append(cons(V2+h*I2,_ [(V2+2*h*I2) for i in 2 .. (m-1)]),_ [V2+h*I2]) diff --git a/src/input/gonshor.input.pamphlet b/src/input/gonshor.input.pamphlet index 51f08777..1bd749ea 100644 --- a/src/input/gonshor.input.pamphlet +++ b/src/input/gonshor.input.pamphlet @@ -75,10 +75,10 @@ commutative?()$GonshorGenetic associative?()$GonshorGenetic -- The canonical basis: -e0 : GonshorGenetic := [1, 0, 0, 0] :: Vector R ; -e1 : GonshorGenetic := [0, 1, 0, 0] :: Vector R ; -e2 : GonshorGenetic := [0, 0, 1, 0] :: Vector R ; -e3 : GonshorGenetic := [0, 0, 0, 1] :: Vector R ; +e0 : GonshorGenetic := [1, 0, 0, 0] :: Vector R +e1 : GonshorGenetic := [0, 1, 0, 0] :: Vector R +e2 : GonshorGenetic := [0, 0, 1, 0] :: Vector R +e3 : GonshorGenetic := [0, 0, 0, 1] :: Vector R -- A generic element of the algebra: diff --git a/src/input/heat.input.pamphlet b/src/input/heat.input.pamphlet index d1bf86c9..11e75b00 100644 --- a/src/input/heat.input.pamphlet +++ b/src/input/heat.input.pamphlet @@ -20,10 +20,10 @@ )set messages autoload off )set quit unprotected -- This is the heat equation -u:= operator('u); +u:= operator('u) heat:= D(u(x, t), t) - D(u(x, t), x, 2) = 0 -- This is the similarity form of the proposed solution -f:= operator('f); +f:= operator('f) s:= rule(u(x, t) == f(x/sqrt(t))/sqrt(t)) -- Apply s to the heat equation s(lhs(heat)) = 0 diff --git a/src/input/lodo.input.pamphlet b/src/input/lodo.input.pamphlet index e19d23dc..62ebf724 100644 --- a/src/input/lodo.input.pamphlet +++ b/src/input/lodo.input.pamphlet @@ -107,7 +107,7 @@ leq ------------------------------------------------------------------------ )clear all PZ := UP(x,INT); Vect := DPMM(3, PZ, SQMATRIX(3,PZ), PZ); -Modo := LODO2(SQMATRIX(3,PZ), Vect); +Modo := LODO2(SQMATRIX(3,PZ), Vect) p := directProduct([3*x**2 + 1, 2*x, 7*x**3 + 2*x]::(VECTOR(PZ)))@Vect m := [[x**2, 1, 0], [1, x**4, 0], [0, 0, 4*x**2]]::(SQMATRIX(3,PZ)) diff --git a/src/input/lodo2.input.pamphlet b/src/input/lodo2.input.pamphlet index 6a26f83e..b315bb0c 100644 --- a/src/input/lodo2.input.pamphlet +++ b/src/input/lodo2.input.pamphlet @@ -36,8 +36,8 @@ c := (1/9)*b*(a + b)**2 PZ := UnivariatePolynomial(x,Integer) x:PZ := 'x Mat := SquareMatrix(3,PZ) -Vect := DPMM(3, PZ, Mat, PZ); -Modo := LODO2(Mat, Vect); +Vect := DPMM(3, PZ, Mat, PZ) +Modo := LODO2(Mat, Vect) m:Mat := matrix [[x**2,1,0],[1,x**4,0],[0,0,4*x**2]] p:Vect := directProduct [3*x**2+1,2*x,7*x**3+2*x] q: Vect := m * p diff --git a/src/input/marcbench.input.pamphlet b/src/input/marcbench.input.pamphlet index 4cdc0249..5940fa55 100644 --- a/src/input/marcbench.input.pamphlet +++ b/src/input/marcbench.input.pamphlet @@ -23,10 +23,10 @@ output(" Ex. 1: 4-body ")$OutputPackage ----------------------------------------------------------------------------- )clear all -ls : List Symbol := [p,s,phi]; -V := OVAR(ls); -R := Integer; -E := IndexedExponents V; +ls : List Symbol := [p,s,phi] +V := OVAR(ls) +R := Integer +E := IndexedExponents V P := NSMP(R, V); LP := List(P); @@ -61,31 +61,31 @@ ls : List Symbol := [x,y,z,t,u]; V := OVAR(ls); R := Integer; E := IndexedExponents V; -P := NSMP(R, V); -LP := List(P); +P := NSMP(R, V) +LP := List(P) ----------------------------------------------------------------------------- --% Initialisations ----------------------------------------------------------------------------- -x: P := 'x; -y: P := 'y; -z: P := 'z; -t: P := 't; -u: P := 'u; -f0 := u-2; -f1:= 2*(u-1)^2+2*(x-z*x+z^2)+y^2*(x-1)^2-2*u*x+2*y*t*(1-x)*(x-z)+2*u*z*t*(t-y)+u^2*t^2*(1-2*z)+2*u*t^2*(z-x)+2*u*t*y*(z-1)+2*u*z*x*(y+1)+(u^2-2*u)*z^2*t^2+2*u^2*z^2+4*u*(1-u)*z+t^2*(z-x)^2; -f2:= t*(2*z+1)*(x-z)+y*(z+2)*(1-x)+u*(u-2)*t+u*(1-2*u)*z*t+u*y*(x+u-z*x-1)+u*(u+1)*z^2*t; -f3:= -u^2*(z-1)^2+2*z*(z-x)-2*(x-1); -f4:= u^2+4*(z-x^2)+3*y^2*(x-1)^2-3*t^2*(z-x)^2 +3*u^2*t^2*(z-1)^2+u^2*z*(z-2)+6*u*t*y*(z+x+z*x-1); -lp :=[f0,f1,f2,f3,f4]; +x: P := 'x +y: P := 'y +z: P := 'z +t: P := 't +u: P := 'u +f0 := u-2 +f1:= 2*(u-1)^2+2*(x-z*x+z^2)+y^2*(x-1)^2-2*u*x+2*y*t*(1-x)*(x-z)+2*u*z*t*(t-y)+u^2*t^2*(1-2*z)+2*u*t^2*(z-x)+2*u*t*y*(z-1)+2*u*z*x*(y+1)+(u^2-2*u)*z^2*t^2+2*u^2*z^2+4*u*(1-u)*z+t^2*(z-x)^2 +f2:= t*(2*z+1)*(x-z)+y*(z+2)*(1-x)+u*(u-2)*t+u*(1-2*u)*z*t+u*y*(x+u-z*x-1)+u*(u+1)*z^2*t +f3:= -u^2*(z-1)^2+2*z*(z-x)-2*(x-1) +f4:= u^2+4*(z-x^2)+3*y^2*(x-1)^2-3*t^2*(z-x)^2 +3*u^2*t^2*(z-1)^2+u^2*z*(z-2)+6*u*t*y*(z+x+z*x-1) +lp :=[f0,f1,f2,f3,f4] -T := REGSET(R,E,V,P); +T := REGSET(R,E,V,P) )set message time off -zeroSetSplit(lp)$T; +zeroSetSplit(lp)$T )set message time on -zeroSetSplit(lp)$T; +zeroSetSplit(lp)$T )set message time off output(" Ex. 3: Rose ")$OutputPackage @@ -95,12 +95,12 @@ output(" Ex. 3: Rose ")$OutputPackage ----------------------------------------------------------------------------- )clear all -ls : List Symbol := [z,y,x]; -V := OVAR(ls); -R := Integer; -E := IndexedExponents V; -P := NSMP(R, V); -LP := List(P); +ls : List Symbol := [z,y,x] +V := OVAR(ls) +R := Integer +E := IndexedExponents V +P := NSMP(R, V) +LP := List(P) ----------------------------------------------------------------------------- --% Initialisations @@ -109,17 +109,17 @@ LP := List(P); x: P := 'x; y: P := 'y; z: P := 'z; -f1 := 7*y**4 - 20*x**2 ; -f2:= (2160*x**2 + 1512*x +315)*z**4-4000*x**2-2800*x-490 ; -f3 := (67200000*x**5 + 94080000*x**4 + 40924800*x**3 + 2634240*x**2-2300844*x-432180)*y**3 + ((40320000*x**6 + 28800000*x**5 + 21168000*x**3 + 4939200*x**2 + 347508*x)*z)*y**2 + ((-23520000*x**4-41395200*x**3-26726560*x**2-7727104*x-852355)*z**2)*y + (-10080000*x**4-28224000*x**3-15288000*x**2-1978032*x-180075)*z**3 ; -lp := [f1,f2,f3]; +f1 := 7*y**4 - 20*x**2 +f2:= (2160*x**2 + 1512*x +315)*z**4-4000*x**2-2800*x-490 +f3 := (67200000*x**5 + 94080000*x**4 + 40924800*x**3 + 2634240*x**2-2300844*x-432180)*y**3 + ((40320000*x**6 + 28800000*x**5 + 21168000*x**3 + 4939200*x**2 + 347508*x)*z)*y**2 + ((-23520000*x**4-41395200*x**3-26726560*x**2-7727104*x-852355)*z**2)*y + (-10080000*x**4-28224000*x**3-15288000*x**2-1978032*x-180075)*z**3 +lp := [f1,f2,f3] -T := REGSET(R,E,V,P); +T := REGSET(R,E,V,P) )set message time off -zeroSetSplit(lp)$T; +zeroSetSplit(lp)$T )set message time on -zeroSetSplit(lp)$T; +zeroSetSplit(lp)$T )set message time off output(" Ex. 4: L-3 ")$OutputPackage @@ -150,11 +150,11 @@ p3 := x + y + z^3 + t-1; p4 := x + y + z + t^3 -1; lp := [p1,p2,p3,p4]; -T := REGSET(R,E,V,P); +T := REGSET(R,E,V,P) )set message time off -zeroSetSplit(lp)$T; +zeroSetSplit(lp)$T )set message time on -zeroSetSplit(lp)$T; +zeroSetSplit(lp)$T )set message time off output(" Ex. 5:Butcher ")$OutputPackage @@ -183,21 +183,21 @@ t: P := 't; u: P := 'u; v: P := 'v; w: P := 'w; -f0 := b1 + y + z - t - w; -f1 := 2*z*u + 2*y*v + 2*t*w - 2*w**2 - w - 1 ; -f2 := 3*z*u**2 + 3*y*v**2 - 3*t*w**2 + 3*w**3 + 3*w**2 - t + 4*w ; -f3 := 6*x*z*v - 6*t*w**2 + 6*w**3 - 3*t*w + 6*w**2 - t + 4*w ; -f4 := 4*z*u**3+ 4*y*v**3+ 4*t*w**3- 4*w**4 - 6*w**3+ 4*t*w- 10*w**2- w- 1 ; -f5 := 8*x*z*u*v +8*t*w**3 -8*w**4 +4*t*w**2 -12*w**3 +4*t*w -14*w**2 -3*w -1 ; -f6 := 12*x*z*v**2+12*t*w**3 -12*w**4 +12*t*w**2 -18*w**3 +8*t*w -14*w**2 -w -1; -f7 := -24*t*w**3 + 24*w**4 - 24*t*w**2 + 36*w**3 - 8*t*w + 26*w**2 + 7*w + 1 ; - -lp := [f0,f1,f2,f3,f4,f5,f6,f7]; -T := REGSET(R,E,V,P); +f0 := b1 + y + z - t - w +f1 := 2*z*u + 2*y*v + 2*t*w - 2*w**2 - w - 1 +f2 := 3*z*u**2 + 3*y*v**2 - 3*t*w**2 + 3*w**3 + 3*w**2 - t + 4*w +f3 := 6*x*z*v - 6*t*w**2 + 6*w**3 - 3*t*w + 6*w**2 - t + 4*w +f4 := 4*z*u**3+ 4*y*v**3+ 4*t*w**3- 4*w**4 - 6*w**3+ 4*t*w- 10*w**2- w- 1 +f5 := 8*x*z*u*v +8*t*w**3 -8*w**4 +4*t*w**2 -12*w**3 +4*t*w -14*w**2 -3*w -1 +f6 := 12*x*z*v**2+12*t*w**3 -12*w**4 +12*t*w**2 -18*w**3 +8*t*w -14*w**2 -w -1 +f7 := -24*t*w**3 + 24*w**4 - 24*t*w**2 + 36*w**3 - 8*t*w + 26*w**2 + 7*w + 1 + +lp := [f0,f1,f2,f3,f4,f5,f6,f7] +T := REGSET(R,E,V,P) )set message time off -zeroSetSplit(lp)$T; +zeroSetSplit(lp)$T )set message time on -zeroSetSplit(lp)$T; +zeroSetSplit(lp)$T )set message time off output(" Ex. 6 : Hairer-2 ")$OutputPackage @@ -247,9 +247,9 @@ lp := [f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11]; T := REGSET(R,E,V,P); )set message time off -zeroSetSplit(lp)$T; +zeroSetSplit(lp)$T )set message time on -zeroSetSplit(lp)$T; +zeroSetSplit(lp)$T )set message time off output(" Ex. 7 : Lichtblau ")$OutputPackage @@ -279,9 +279,9 @@ lp := [p1, p2]; T := REGSET(R,E,V,P); )set message time off -zeroSetSplit(lp)$T; +zeroSetSplit(lp)$T )set message time on -zeroSetSplit(lp)$T; +zeroSetSplit(lp)$T )set message time off output(" Ex. 8: Liu original ")$OutputPackage @@ -316,9 +316,9 @@ lp := [p1,p2,p3,p4] ; T := REGSET(R,E,V,P); )set message time off -zeroSetSplit(lp)$T; +zeroSetSplit(lp)$T )set message time on -zeroSetSplit(lp)$T; +zeroSetSplit(lp)$T )set message time off output(" Ex. 9: Liu homog. ")$OutputPackage @@ -354,9 +354,9 @@ lp := [p1,p2,p3,p4] ; T := REGSET(R,E,V,P); )set message time off -zeroSetSplit(lp)$T; +zeroSetSplit(lp)$T )set message time on -zeroSetSplit(lp)$T; +zeroSetSplit(lp)$T )set message time off output(" Ex. 10: Vermeer ")$OutputPackage @@ -405,7 +405,7 @@ output(" Ex. 11: Wu-Wang-2" ) ----------------------------------------------------------------------------- )clear all -ls : List Symbol := reverse [x10,x11,x12,x13,x21,x22,x23,x30,x101,x102,x103,x104,x105]; +ls : List Symbol := reverse [x10,x11,x12,x13,x21,x22,x23,x30,x101,x102,x103,x104,x105] V := OVAR(ls); R := Integer; E := IndexedExponents V; @@ -450,9 +450,9 @@ lp:=[f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16]; T := REGSET(R,E,V,P); )set message time off -zeroSetSplit(lp)$T; +zeroSetSplit(lp)$T )set message time on -zeroSetSplit(lp)$T; +zeroSetSplit(lp)$T )set message time off output(" Ex. 12: f-633 ")$OutputPackage @@ -498,9 +498,9 @@ lp := [p1,p2,p3,p4,p6,p7,p8,p9,p10]; T := REGSET(R,E,V,P); )set message time off -zeroSetSplit(lp)$T; +zeroSetSplit(lp)$T )set message time on -zeroSetSplit(lp)$T; +zeroSetSplit(lp)$T )set message time off @ diff --git a/src/input/tutchap67.input.pamphlet b/src/input/tutchap67.input.pamphlet index f730cf8f..1d5c1f56 100644 --- a/src/input/tutchap67.input.pamphlet +++ b/src/input/tutchap67.input.pamphlet @@ -127,8 +127,8 @@ solve(matD,[5,6,7,9]) hilbert3 :: Matrix DoubleFloat -- continuing the previous session % * inverse % matrix [[1/(i+j) for i in 1..11] for j in 1..11]::Matrix DoubleFloat; -badUnit := % * inverse %; -diagEls := set [%(i,i) for i in 1..11]; +badUnit := % * inverse % +diagEls := set [%(i,i) for i in 1..11] min diagEls max diagEls offDiags := empty()$Set DoubleFloat @@ -137,14 +137,14 @@ for i in 1..11 repeat _ offDiags := union(offDiags,badUnit(i,j)) min offDiags max offDiags -hilbert11 := matrix [[1/(i+j) for i in 1..11] for j in 1..11]; +hilbert11 := matrix [[1/(i+j) for i in 1..11] for j in 1..11] % * inverse % detHilbert3 := determinant hilbert3 detHilbert11 := determinant hilbert11 % :: DoubleFloat determinant(hilbert11::Matrix DoubleFloat) -test3 := hilbert3 :: Matrix Polynomial Fraction Integer; -test3(1,1) := (1 + eps)/2; +test3 := hilbert3 :: Matrix Polynomial Fraction Integer +test3(1,1) := (1 + eps)/2 determinant test3 (% - detHilbert3)/detHilbert3 for i in 1..3 repeat for j in 1..3 repeat _ @@ -152,8 +152,8 @@ for i in 1..3 repeat for j in 1..3 repeat _ test3 (determinant test3 - detHilbert3)/detHilbert3 error3 := matrix [[eps[i,j] for i in 1..3] for j in 1..3] -test3 := hilbert3 + t*error3; -detErr := (determinant test3 - detHilbert3)/detHilbert3; +test3 := hilbert3 + t*error3 +detErr := (determinant test3 - detHilbert3)/detHilbert3 detErrReduced := coefficient(%,'t,1) coefficient(detErr,'t,0) epses := variables detErrReduced diff --git a/src/input/wester.input.pamphlet b/src/input/wester.input.pamphlet index 5e08228b..0576c2f6 100644 --- a/src/input/wester.input.pamphlet +++ b/src/input/wester.input.pamphlet @@ -30,10 +30,10 @@ factor(%) -- Infinite precision rational numbers 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10 -- Arbitrary precision floating point numbers -digits(50); +digits(50) -- This number is nearly an integer exp(sqrt(163.)*%pi) -digits(20); +digits(20) -- Special functions besselJ(2, 1 + %i) -- Complete decimal expansion of a rational number |